606,487 research outputs found

    The New Zealand Strong Motion Earthquake Recorder Network

    Get PDF
    The network of strong-motion earthquake recorders, maintained throughout New Zealand by the Engineering Seismology Section of the Department of Scientific and Industrial Research, is described. The instruments are either deployed as ground instruments to measure potential earthquake attack on structures, or in structures, e.g. buildings, dams and industrial installations, to record structural response. Details are given of installation of instruments , maintenance, laboratory work, record retrieval and digitisation, costs and staffing for the network. Future developments mooted include an improved digitising system, the introduction of an improved version of the existing mechanical-optical instrument in 1979, and, in the long term, the introduction of an entirely new digital recorder, having an electrical output from its accelerometers, which will make possible the transmission of data by telephone or radio link

    Collective Particle Flow through Random Media

    Full text link
    A simple model for the nonlinear collective transport of interacting particles in a random medium with strong disorder is introduced and analyzed. A finite threshold for the driving force divides the behavior into two regimes characterized by the presence or absence of a steady-state particle current. Below this threshold, transient motion is found in response to an increase in the force, while above threshold the flow approaches a steady state with motion only on a network of channels which is sparse near threshold. Some of the critical behavior near threshold is analyzed via mean field theory, and analytic results on the statistics of the moving phase are derived. Many of the results should apply, at least qualitatively, to the motion of magnetic bubble arrays and to the driven motion of vortices in thin film superconductors when the randomness is strong enough to destroy the tendencies to lattice order even on short length scales. Various history dependent phenomena are also discussed.Comment: 63 preprint pages plus 6 figures. Submitted to Phys Rev

    Self-diffusion in dense granular shear flows

    Full text link
    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear in a 2D Couette geometry. We find that self-diffusivities are proportional to the local shear rate with diffusivities along the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and drag at the moving boundary lead to particle displacements that can appear sub- or super-diffusive. In particular, diffusion appears superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems with no obvious analog in rapid flows. Specifically, the diffusivity is supressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean flow, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Levy flights are also observed. Although correlated motion creates velocity fields qualitatively different from Brownian motion and can introduce non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E

    Molecular Dynamics Simulation of Vascular Network Formation

    Full text link
    Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells' motion is governed by the gradient of the concentration of a chemical substance that they produce (chemotaxis). The typical time of degradation of the chemical substance introduces a characteristic length in the system. We show that point-like model cells form network resembling structures tuned by this characteristic length, before collapsing altogether. Successively, we improve the non-realistic point-like model cells by introducing an isotropic strong repulsive force between them and a velocity dependent force mimicking the observed peculiarity of endothelial cells to preserve the direction of their motion (persistence). This more realistic model does not show a clear network formation. We ascribe this partial fault in reproducing the experiments to the static geometry of our model cells that, in reality, change their shapes by elongating toward neighboring cells.Comment: 10 pages, 3 figures, 2 of which composite with 8 pictures each. Accepted on J.Stat.Mech. (2009). Appeared at the poster session of StatPhys23, Genoa, Italy, July 13 (2007

    The engineering strong-motion database: A platform to access pan-European accelerometric data

    Get PDF
    This article describes the Engineering Strong-Motion Database (ESM), developed in the framework of the European project Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation (NERA, see Data and Resources). ESM is specifically designed to provide end users only with quality-checked, uniformly processed strong-motion data and relevant parameters and has done so since 1969 in the EuroMediterranean region. The database was designed for a large variety of stakeholders (expert seismologists, earthquake engineers, students, and professionals) with a user-friendly and straightforward web interface. Users can access earthquake and station information and download waveforms of events with magnitude 65 4:0 (unprocessed and processed acceleration, velocity, and displacement, and acceleration and displacement response spectra at 5% damping). Specific tools are also available to users to process strong-motion data and select ground-motion suites for codebased seismic structural analyses
    corecore