606,487 research outputs found
The New Zealand Strong Motion Earthquake Recorder Network
The network of strong-motion earthquake recorders, maintained throughout
New Zealand by the Engineering Seismology Section of the Department of
Scientific and Industrial Research, is described. The instruments are either
deployed as ground instruments to measure potential earthquake attack on
structures, or in structures, e.g. buildings, dams and industrial installations,
to record structural response. Details are given of installation of instruments , maintenance, laboratory work, record retrieval and digitisation,
costs and staffing for the network. Future developments mooted include an
improved digitising system, the introduction of an improved version of the
existing mechanical-optical instrument in 1979, and, in the long term, the
introduction of an entirely new digital recorder, having an electrical
output from its accelerometers, which will make possible the transmission
of data by telephone or radio link
Collective Particle Flow through Random Media
A simple model for the nonlinear collective transport of interacting
particles in a random medium with strong disorder is introduced and analyzed. A
finite threshold for the driving force divides the behavior into two regimes
characterized by the presence or absence of a steady-state particle current.
Below this threshold, transient motion is found in response to an increase in
the force, while above threshold the flow approaches a steady state with motion
only on a network of channels which is sparse near threshold. Some of the
critical behavior near threshold is analyzed via mean field theory, and
analytic results on the statistics of the moving phase are derived. Many of the
results should apply, at least qualitatively, to the motion of magnetic bubble
arrays and to the driven motion of vortices in thin film superconductors when
the randomness is strong enough to destroy the tendencies to lattice order even
on short length scales. Various history dependent phenomena are also discussed.Comment: 63 preprint pages plus 6 figures. Submitted to Phys Rev
Self-diffusion in dense granular shear flows
Diffusivity is a key quantity in describing velocity fluctuations in granular
materials. These fluctuations are the basis of many thermodynamic and
hydrodynamic models which aim to provide a statistical description of granular
systems. We present experimental results on diffusivity in dense, granular
shear in a 2D Couette geometry. We find that self-diffusivities are
proportional to the local shear rate with diffusivities along the mean flow
approximately twice as large as those in the perpendicular direction. The
magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the
particle radius. However, the gradient in shear rate, coupling to the mean
flow, and drag at the moving boundary lead to particle displacements that can
appear sub- or super-diffusive. In particular, diffusion appears superdiffusive
along the mean flow direction due to Taylor dispersion effects and subdiffusive
along the perpendicular direction due to the gradient in shear rate. The
anisotropic force network leads to an additional anisotropy in the diffusivity
that is a property of dense systems with no obvious analog in rapid flows.
Specifically, the diffusivity is supressed along the direction of the strong
force network. A simple random walk simulation reproduces the key features of
the data, such as the apparent superdiffusive and subdiffusive behavior arising
from the mean flow, confirming the underlying diffusive motion. The additional
anisotropy is not observed in the simulation since the strong force network is
not included. Examples of correlated motion, such as transient vortices, and
Levy flights are also observed. Although correlated motion creates velocity
fields qualitatively different from Brownian motion and can introduce
non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
Molecular Dynamics Simulation of Vascular Network Formation
Endothelial cells are responsible for the formation of the capillary blood
vessel network. We describe a system of endothelial cells by means of
two-dimensional molecular dynamics simulations of point-like particles. Cells'
motion is governed by the gradient of the concentration of a chemical substance
that they produce (chemotaxis). The typical time of degradation of the chemical
substance introduces a characteristic length in the system. We show that
point-like model cells form network resembling structures tuned by this
characteristic length, before collapsing altogether. Successively, we improve
the non-realistic point-like model cells by introducing an isotropic strong
repulsive force between them and a velocity dependent force mimicking the
observed peculiarity of endothelial cells to preserve the direction of their
motion (persistence). This more realistic model does not show a clear network
formation. We ascribe this partial fault in reproducing the experiments to the
static geometry of our model cells that, in reality, change their shapes by
elongating toward neighboring cells.Comment: 10 pages, 3 figures, 2 of which composite with 8 pictures each.
Accepted on J.Stat.Mech. (2009). Appeared at the poster session of
StatPhys23, Genoa, Italy, July 13 (2007
The engineering strong-motion database: A platform to access pan-European accelerometric data
This article describes the Engineering Strong-Motion Database (ESM), developed in the framework of the European project Network of European Research Infrastructures for Earthquake Risk Assessment and Mitigation (NERA, see Data and Resources). ESM is specifically designed to provide end users only with quality-checked, uniformly processed strong-motion data and relevant parameters and has done so since 1969 in the EuroMediterranean region. The database was designed for a large variety of stakeholders (expert seismologists, earthquake engineers, students, and professionals) with a user-friendly and straightforward web interface. Users can access earthquake and station information and download waveforms of events with magnitude 65 4:0 (unprocessed and processed acceleration, velocity, and displacement, and acceleration and displacement response spectra at 5% damping). Specific tools are also available to users to process strong-motion data and select ground-motion suites for codebased seismic structural analyses
- …
