480 research outputs found

    Strong Complementarity and Non-locality in Categorical Quantum Mechanics

    Full text link
    Categorical quantum mechanics studies quantum theory in the framework of dagger-compact closed categories. Using this framework, we establish a tight relationship between two key quantum theoretical notions: non-locality and complementarity. In particular, we establish a direct connection between Mermin-type non-locality scenarios, which we generalise to an arbitrary number of parties, using systems of arbitrary dimension, and performing arbitrary measurements, and a new stronger notion of complementarity which we introduce here. Our derivation of the fact that strong complementarity is a necessary condition for a Mermin scenario provides a crisp operational interpretation for strong complementarity. We also provide a complete classification of strongly complementary observables for quantum theory, something which has not yet been achieved for ordinary complementarity. Since our main results are expressed in the (diagrammatic) language of dagger-compact categories, they can be applied outside of quantum theory, in any setting which supports the purely algebraic notion of strongly complementary observables. We have therefore introduced a method for discussing non-locality in a wide variety of models in addition to quantum theory. The diagrammatic calculus substantially simplifies (and sometimes even trivialises) many of the derivations, and provides new insights. In particular, the diagrammatic computation of correlations clearly shows how local measurements interact to yield a global overall effect. In other words, we depict non-locality.Comment: 15 pages (incl. 5 appendix). To appear: LiCS 201

    Mermin Non-Locality in Abstract Process Theories

    Full text link
    The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates) is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N) family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y), opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas

    Get PDF
    In this paper we make an extensive description of quantum non-locality, one of the most intriguing and fascinating facets of quantum mechanics. After a general presentation of several studies on this subject, we consider if quantum non-locality, and the friction it carries with special relativity, can eventually find a "solution" by considering higher dimensional spaces.Comment: 1

    Depicting qudit quantum mechanics and mutually unbiased qudit theories

    Full text link
    We generalize the ZX calculus to quantum systems of dimension higher than two. The resulting calculus is sound and universal for quantum mechanics. We define the notion of a mutually unbiased qudit theory and study two particular instances of these theories in detail: qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits. The calculus allows us to analyze the structure of qudit stabilizer quantum mechanics and provides a geometrical picture of qudit stabilizer theory using D-toruses, which generalizes the Bloch sphere picture for qubit stabilizer quantum mechanics. We also use our framework to describe generalizations of Spekkens toy theory to higher dimensional systems. This gives a novel proof that qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits are operationally equivalent in three dimensions. The qudit pictorial calculus is a useful tool to study quantum foundations, understand the relationship between qubit and qudit quantum mechanics, and provide a novel, high level description of quantum information protocols.Comment: In Proceedings QPL 2014, arXiv:1412.810

    A Bestiary of Sets and Relations

    Full text link
    Building on established literature and recent developments in the graph-theoretic characterisation of its CPM category, we provide a treatment of pure state and mixed state quantum mechanics in the category fRel of finite sets and relations. On the way, we highlight the wealth of exotic beasts that hide amongst the extensive operational and structural similarities that the theory shares with more traditional arenas of categorical quantum mechanics, such as the category fdHilb. We conclude our journey by proving that fRel is local, but not without some unexpected twists.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Environment and classical channels in categorical quantum mechanics

    Full text link
    We present a both simple and comprehensive graphical calculus for quantum computing. In particular, we axiomatize the notion of an environment, which together with the earlier introduced axiomatic notion of classical structure enables us to define classical channels, quantum measurements and classical control. If we moreover adjoin the earlier introduced axiomatic notion of complementarity, we obtain sufficient structural power for constructive representation and correctness derivation of typical quantum informatic protocols.Comment: 26 pages, many pics; this third version has substantially more explanations than previous ones; Journal reference is of short 14 page version; Proceedings of the 19th EACSL Annual Conference on Computer Science Logic (CSL), Lecture Notes in Computer Science 6247, Springer-Verlag (2010

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    Categorical Quantum Dynamics

    Full text link
    We use strong complementarity to introduce dynamics and symmetries within the framework of CQM, which we also extend to infinite-dimensional separable Hilbert spaces: these were long-missing features, which open the way to a wealth of new applications. The coherent treatment presented in this work also provides a variety of novel insights into the dynamics and symmetries of quantum systems: examples include the extremely simple characterisation of symmetry-observable duality, the connection of strong complementarity with the Weyl Canonical Commutation Relations, the generalisations of Feynman's clock construction, the existence of time observables and the emergence of quantum clocks. Furthermore, we show that strong complementarity is a key resource for quantum algorithms and protocols. We provide the first fully diagrammatic, theory-independent proof of correctness for the quantum algorithm solving the Hidden Subgroup Problem, and show that strong complementarity is the feature providing the quantum advantage. In quantum foundations, we use strong complementarity to derive the exact conditions relating non-locality to the structure of phase groups, within the context of Mermin-type non-locality arguments. Our non-locality results find further application to quantum cryptography, where we use them to define a quantum-classical secret sharing scheme with provable device-independent security guarantees. All in all, we argue that strong complementarity is a truly powerful and versatile building block for quantum theory and its applications, and one that should draw a lot more attention in the future.Comment: Thesis submitted for the degree of Doctor of Philosophy, Oxford University, Michaelmas Term 2016 (273 pages
    • …
    corecore