10 research outputs found

    Successive Refinement of Abstract Sources

    Get PDF
    In successive refinement of information, the decoder refines its representation of the source progressively as it receives more encoded bits. The rate-distortion region of successive refinement describes the minimum rates required to attain the target distortions at each decoding stage. In this paper, we derive a parametric characterization of the rate-distortion region for successive refinement of abstract sources. Our characterization extends Csiszar's result to successive refinement, and generalizes a result by Tuncel and Rose, applicable for finite alphabet sources, to abstract sources. This characterization spawns a family of outer bounds to the rate-distortion region. It also enables an iterative algorithm for computing the rate-distortion region, which generalizes Blahut's algorithm to successive refinement. Finally, it leads a new nonasymptotic converse bound. In all the scenarios where the dispersion is known, this bound is second-order optimal. In our proof technique, we avoid Karush-Kuhn-Tucker conditions of optimality, and we use basic tools of probability theory. We leverage the Donsker-Varadhan lemma for the minimization of relative entropy on abstract probability spaces.Comment: Extended version of a paper presented at ISIT 201

    Exponential Strong Converse for Successive Refinement with Causal Decoder Side Information

    Full text link
    We consider the kk-user successive refinement problem with causal decoder side information and derive an exponential strong converse theorem. The rate-distortion region for the problem can be derived as a straightforward extension of the two-user case by Maor and Merhav (2008). We show that for any rate-distortion tuple outside the rate-distortion region of the kk-user successive refinement problem with causal decoder side information, the joint excess-distortion probability approaches one exponentially fast. Our proof follows by judiciously adapting the recently proposed strong converse technique by Oohama using the information spectrum method, the variational form of the rate-distortion region and H\"older's inequality. The lossy source coding problem with causal decoder side information considered by El Gamal and Weissman is a special case (k=1k=1) of the current problem. Therefore, the exponential strong converse theorem for the El Gamal and Weissman problem follows as a corollary of our result

    The rate-distortion function for successive refinement of abstract sources

    Get PDF
    In successive refinement of information, the decoder refines its representation of the source progressively as it receives more encoded bits. The rate-distortion region of successive refinement describes the minimum rates required to attain the target distortions at each decoding stage. In this paper, we derive a parametric characterization of the rate-distortion region for successive refinement of abstract sources. Our characterization extends Csiszar's result [1] to successive refinement, and generalizes a result by Tuncel and Rose [2], applicable for finite alphabet sources, to abstract sources. The new characterization leads to a family of outer bounds to the rate-distortion region. It also enables new nonasymptotic converse bounds

    Successive Refinement of Shannon Cipher System Under Maximal Leakage

    Full text link
    We study the successive refinement setting of Shannon cipher system (SCS) under the maximal leakage constraint for discrete memoryless sources under bounded distortion measures. Specifically, we generalize the threat model for the point-to-point rate-distortion setting of Issa, Wagner and Kamath (T-IT 2020) to the multiterminal successive refinement setting. Under mild conditions that correspond to partial secrecy, we characterize the asymptotically optimal normalized maximal leakage region for both the joint excess-distortion probability (JEP) and the expected distortion reliability constraints. Under JEP, in the achievability part, we propose a type-based coding scheme, analyze the reliability guarantee for JEP and bound the leakage of the information source through compressed versions. In the converse part, by analyzing a guessing scheme of the eavesdropper, we prove the optimality of our achievability result. Under expected distortion, the achievability part is established similarly to the JEP counterpart. The converse proof proceeds by generalizing the corresponding results for the rate-distortion setting of SCS by Schieler and Cuff (T-IT 2014) to the successive refinement setting. Somewhat surprisingly, the normalized maximal leakage regions under both JEP and expected distortion constraints are identical under certain conditions, although JEP appears to be a stronger reliability constraint
    corecore