34,129 research outputs found

    Strong Secrecy for Multiple Access Channels

    Full text link
    We show strongly secret achievable rate regions for two different wiretap multiple-access channel coding problems. In the first problem, each encoder has a private message and both together have a common message to transmit. The encoders have entropy-limited access to common randomness. If no common randomness is available, then the achievable region derived here does not allow for the secret transmission of a common message. The second coding problem assumes that the encoders do not have a common message nor access to common randomness. However, they may have a conferencing link over which they may iteratively exchange rate-limited information. This can be used to form a common message and common randomness to reduce the second coding problem to the first one. We give the example of a channel where the achievable region equals zero without conferencing or common randomness and where conferencing establishes the possibility of secret message transmission. Both coding problems describe practically relevant networks which need to be secured against eavesdropping attacks.Comment: 55 page

    Polar Coding for the Cognitive Interference Channel with Confidential Messages

    Full text link
    In this paper, we propose a low-complexity, secrecy capacity achieving polar coding scheme for the cognitive interference channel with confidential messages (CICC) under the strong secrecy criterion. Existing polar coding schemes for interference channels rely on the use of polar codes for the multiple access channel, the code construction problem of which can be complicated. We show that the whole secrecy capacity region of the CICC can be achieved by simple point-to-point polar codes due to the cognitivity, and our proposed scheme requires the minimum rate of randomness at the encoder

    On Strong Secrecy for Multiple Access Channel with States and Causal CSI

    Full text link
    Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. An inner bound of the capacity is provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are studied. The first one uses backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy reproduction of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.Comment: Accepted for presentation at ISIT202

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Weak Secrecy in the Multi-Way Untrusted Relay Channel with Compute-and-Forward

    Full text link
    We investigate the problem of secure communications in a Gaussian multi-way relay channel applying the compute-and-forward scheme using nested lattice codes. All nodes employ half-duplex operation and can exchange confidential messages only via an untrusted relay. The relay is assumed to be honest but curious, i.e., an eavesdropper that conforms to the system rules and applies the intended relaying scheme. We start with the general case of the single-input multiple-output (SIMO) L-user multi-way relay channel and provide an achievable secrecy rate region under a weak secrecy criterion. We show that the securely achievable sum rate is equivalent to the difference between the computation rate and the multiple access channel (MAC) capacity. Particularly, we show that all nodes must encode their messages such that the common computation rate tuple falls outside the MAC capacity region of the relay. We provide results for the single-input single-output (SISO) and the multiple-input single-input (MISO) L-user multi-way relay channel as well as the two-way relay channel. We discuss these results and show the dependency between channel realization and achievable secrecy rate. We further compare our result to available results in the literature for different schemes and show that the proposed scheme operates close to the compute-and-forward rate without secrecy.Comment: submitted to JSAC Special Issue on Fundamental Approaches to Network Coding in Wireless Communication System

    Securing Downlink Non-Orthogonal Multiple Access Systems by Trusted Relays

    Full text link
    A downlink single-input single-output non-orthogonal multiple access system is considered in which a base station (BS) is communicating with two legitimate users in the presence of an external eavesdropper. A group of trusted cooperative half-duplex relay nodes, powered by the BS, is employed to assist the BS's transmission. The goal is to design relaying schemes such that the legitimate users' secrecy rate region is maximized subject to a total power constraint on the BS and the relays' transmissions. Three relaying schemes are investigated: cooperative jamming, decode-and-forward, and amplify-and-forward. Depending on the scheme, secure beamforming signals are carefully designed for the relay nodes that either diminish the eavesdropper's rate without affecting that of the legitimate users, or increase the legitimate users' rates without increasing that of the eavesdropper. The results show that there is no relaying scheme that fits all conditions; the best relaying scheme depends on the system parameters, namely, the relays' and eavesdropper's distances from the BS, and the number of relays. They also show that the relatively simple cooperative jamming scheme outperforms other schemes when the relays are far from the BS and/or close to the eavesdropper.Comment: To appear in IEEE Globecom 201
    • …
    corecore