5,047 research outputs found

    Strong fairness and ultra metrics

    Get PDF
    AbstractWe answer an open question of Costa and Hennessy and present a characterization of the infinite fair computations in finite labeled transition systems—without any structure of the states—as cluster points in metric spaces. This technique is applied to reduce the logical complexity of several known fairness concepts from Π03 to Π02 and from Σ11 to Π03, respectively

    Quasi-Dynamic Frame Coordination For Ultra- Reliability and Low-Latency in 5G TDD Systems

    Get PDF
    The fifth generation (5G) mobile technology features the ultra-reliable and low-latency communications (URLLC) as a major service class. URLLC applications demand a tight radio latency with extreme link reliability. In 5G dynamic time division duplexing (TDD) systems, URLLC requirements become further challenging to achieve due to the severe and fast-varying cross link interference (CLI) and the switching time of the radio frame configurations (RFCs). In this work, we propose a quasi-dynamic inter-cell frame coordination algorithm using hybrid frame design and a cyclic-offset-based RFC code-book. The proposed solution adaptively updates the RFCs in time such that both the average CLI and the user-centric radio latency are minimized. Compared to state-of-the-art dynamic TDD studies, the proposed scheme shows a significant improvement in the URLLC outage latency, i.e., 92% reduction gain, while boosting the cell-edge capacity by 189% and with a greatly reduced coordination overhead space, limited to B-bit

    Adaptive Beam-Frequency Allocation Algorithm with Position Uncertainty for Millimeter-Wave MIMO Systems

    Full text link
    Envisioned for fifth generation (5G) systems, millimeter-wave (mmWave) communications are under very active research worldwide. Although pencil beams with accurate beamtracking may boost the throughput of mmWave systems, this poses great challenges in the design of radio resource allocation for highly mobile users. In this paper, we propose a joint adaptive beam-frequency allocation algorithm that takes into account the position uncertainty inherent to high mobility and/or unstable users as, e.g., Unmanned Aerial Vehicles (UAV), for whom this is a major problem. Our proposed method provides an optimized beamwidth selection under quality of service (QoS) requirements for maximizing system proportional fairness, under user position uncertainty. The rationale of our scheme is to adapt the beamwidth such that the best trade-off among system performance (narrower beam) and robustness to uncertainty (wider beam) is achieved. Simulation results show that the proposed method largely enhances the system performance compared to reference algorithms, by an appropriate adaptation of the mmWave beamwidths, even under severe uncertainties and imperfect channel state information (CSIs).Comment: 5 pages, 6 figures, 1 table, 1 algorith

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter
    • …
    corecore