13,429 research outputs found

    A Common View on Strong, Uniform, and Other Notions of Equivalence in Answer-Set Programming

    Full text link
    Logic programming under the answer-set semantics nowadays deals with numerous different notions of program equivalence. This is due to the fact that equivalence for substitution (known as strong equivalence) and ordinary equivalence are different concepts. The former holds, given programs P and Q, iff P can be faithfully replaced by Q within any context R, while the latter holds iff P and Q provide the same output, that is, they have the same answer sets. Notions in between strong and ordinary equivalence have been introduced as theoretical tools to compare incomplete programs and are defined by either restricting the syntactic structure of the considered context programs R or by bounding the set A of atoms allowed to occur in R (relativized equivalence).For the latter approach, different A yield properly different equivalence notions, in general. For the former approach, however, it turned out that any ``reasonable'' syntactic restriction to R coincides with either ordinary, strong, or uniform equivalence. In this paper, we propose a parameterization for equivalence notions which takes care of both such kinds of restrictions simultaneously by bounding, on the one hand, the atoms which are allowed to occur in the rule heads of the context and, on the other hand, the atoms which are allowed to occur in the rule bodies of the context. We introduce a general semantical characterization which includes known ones as SE-models (for strong equivalence) or UE-models (for uniform equivalence) as special cases. Moreover,we provide complexity bounds for the problem in question and sketch a possible implementation method. To appear in Theory and Practice of Logic Programming (TPLP)

    Logic Programming with Default, Weak and Strict Negations

    Get PDF
    This paper treats logic programming with three kinds of negation: default, weak and strict negations. A 3-valued logic model theory is discussed for logic programs with three kinds of negation. The procedure is constructed for negations so that a soundness of the procedure is guaranteed in terms of 3-valued logic model theory.Comment: 14 pages, to appear in Theory and Practice of Logic Programming (TPLP

    Semantics of logic programs with explicit negation

    Get PDF
    After a historical introduction, the bulk of the thesis concerns the study of a declarative semantics for logic programs. The main original contributions are: ² WFSX (Well–Founded Semantics with eXplicit negation), a new semantics for logic programs with explicit negation (i.e. extended logic programs), which compares favourably in its properties with other extant semantics. ² A generic characterization schema that facilitates comparisons among a diversity of semantics of extended logic programs, including WFSX. ² An autoepistemic and a default logic corresponding to WFSX, which solve existing problems of the classical approaches to autoepistemic and default logics, and clarify the meaning of explicit negation in logic programs. ² A framework for defining a spectrum of semantics of extended logic programs based on the abduction of negative hypotheses. This framework allows for the characterization of different levels of scepticism/credulity, consensuality, and argumentation. One of the semantics of abduction coincides with WFSX. ² O–semantics, a semantics that uniquely adds more CWA hypotheses to WFSX. The techniques used for doing so are applicable as well to the well–founded semantics of normal logic programs. ² By introducing explicit negation into logic programs contradiction may appear. I present two approaches for dealing with contradiction, and show their equivalence. One of the approaches consists in avoiding contradiction, and is based on restrictions in the adoption of abductive hypotheses. The other approach consists in removing contradiction, and is based in a transformation of contradictory programs into noncontradictory ones, guided by the reasons for contradiction

    Strong Equivalence of Logic Programs with Abstract Constraint Atoms

    Get PDF
    Abstract. Logic programs with abstract constraint atoms provide a unifying framework for studying logic programs with various kinds of constraints. Establishing strong equivalence between logic programs is a key property for program maintenance and optimization, and for guaranteeing the same behavior for a revised original program in any context. In this paper, we study strong equivalence of logic programs with abstract constraint atoms. We first give a general characterization of strong equivalence based on a new definition of program reduct for logic programs with abstract constraints. Then we consider a particular kind of program revision-constraint replacements addressing the question: under what conditions can a constraint in a program be replaced by other constraints, so that the resulting program is strongly equivalent to the original one
    • …
    corecore