54 research outputs found

    Strong Converse and Second-Order Asymptotics of Channel Resolvability

    Full text link
    We study the problem of channel resolvability for fixed i.i.d. input distributions and discrete memoryless channels (DMCs), and derive the strong converse theorem for any DMCs that are not necessarily full rank. We also derive the optimal second-order rate under a condition. Furthermore, under the condition that a DMC has the unique capacity achieving input distribution, we derive the optimal second-order rate of channel resolvability for the worst input distribution.Comment: 7 pages, a shorter version will appear in ISIT 2014, this version includes the proofs of technical lemmas in appendice

    Resolvability on Continuous Alphabets

    Full text link
    We characterize the resolvability region for a large class of point-to-point channels with continuous alphabets. In our direct result, we prove not only the existence of good resolvability codebooks, but adapt an approach based on the Chernoff-Hoeffding bound to the continuous case showing that the probability of drawing an unsuitable codebook is doubly exponentially small. For the converse part, we show that our previous elementary result carries over to the continuous case easily under some mild continuity assumption.Comment: v2: Corrected inaccuracies in proof of direct part. Statement of Theorem 3 slightly adapted; other results unchanged v3: Extended version of camera ready version submitted to ISIT 201

    MAC Resolvability: First And Second Order Results

    Full text link
    Building upon previous work on the relation between secrecy and channel resolvability, we revisit a secrecy proof for the multiple-access channel from the perspective of resolvability. We then refine the approach in order to obtain some novel results on the second-order achievable rates.Comment: Slightly extended version of the paper accepted at the 4th Workshop on Physical-Layer Methods for Wireless Security during IEEE CNS 2017. v2: Fixed typos and extended literature section in accordance with reviewers' recommendation

    Finite-Block-Length Analysis in Classical and Quantum Information Theory

    Full text link
    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects

    Quantum soft-covering lemma with applications to rate-distortion coding, resolvability and identification via quantum channels

    Full text link
    We propose a quantum soft-covering problem for a given general quantum channel and one of its output states, which consists in finding the minimum rank of an input state needed to approximate the given channel output. We then prove a one-shot quantum covering lemma in terms of smooth min-entropies by leveraging decoupling techniques from quantum Shannon theory. This covering result is shown to be equivalent to a coding theorem for rate distortion under a posterior (reverse) channel distortion criterion [Atif, Sohail, Pradhan, arXiv:2302.00625]. Both one-shot results directly yield corollaries about the i.i.d. asymptotics, in terms of the coherent information of the channel. The power of our quantum covering lemma is demonstrated by two additional applications: first, we formulate a quantum channel resolvability problem, and provide one-shot as well as asymptotic upper and lower bounds. Secondly, we provide new upper bounds on the unrestricted and simultaneous identification capacities of quantum channels, in particular separating for the first time the simultaneous identification capacity from the unrestricted one, proving a long-standing conjecture of the last author.Comment: 29 pages, 3 figures; v2 fixes an error in Definition 6.1 and various typos and minor issues throughou
    • …
    corecore