1,613 research outputs found

    Strong chromatic index of k-degenerate graphs

    Full text link
    A {\em strong edge coloring} of a graph GG is a proper edge coloring in which every color class is an induced matching. The {\em strong chromatic index} \chiup_{s}'(G) of a graph GG is the minimum number of colors in a strong edge coloring of GG. In this note, we improve a result by D{\k e}bski \etal [Strong chromatic index of sparse graphs, arXiv:1301.1992v1] and show that the strong chromatic index of a kk-degenerate graph GG is at most (4k−2)⋅Δ(G)−2k2+1(4k-2) \cdot \Delta(G) - 2k^{2} + 1. As a direct consequence, the strong chromatic index of a 22-degenerate graph GG is at most 6Δ(G)−76\Delta(G) - 7, which improves the upper bound 10Δ(G)−1010\Delta(G) - 10 by Chang and Narayanan [Strong chromatic index of 2-degenerate graphs, J. Graph Theory 73 (2013) (2) 119--126]. For a special subclass of 22-degenerate graphs, we obtain a better upper bound, namely if GG is a graph such that all of its 3+3^{+}-vertices induce a forest, then \chiup_{s}'(G) \leq 4 \Delta(G) -3; as a corollary, every minimally 22-connected graph GG has strong chromatic index at most 4Δ(G)−34 \Delta(G) - 3. Moreover, all the results in this note are best possible in some sense.Comment: 3 pages in Discrete Mathematics, 201

    Strong chromatic index of sparse graphs

    Full text link
    A coloring of the edges of a graph GG is strong if each color class is an induced matching of GG. The strong chromatic index of GG, denoted by χs′(G)\chi_{s}^{\prime}(G), is the least number of colors in a strong edge coloring of GG. In this note we prove that χs′(G)≤(4k−1)Δ(G)−k(2k+1)+1\chi_{s}^{\prime}(G)\leq (4k-1)\Delta (G)-k(2k+1)+1 for every kk-degenerate graph GG. This confirms the strong version of conjecture stated recently by Chang and Narayanan [3]. Our approach allows also to improve the upper bound from [3] for chordless graphs. We get that % \chi_{s}^{\prime}(G)\leq 4\Delta -3 for any chordless graph GG. Both bounds remain valid for the list version of the strong edge coloring of these graphs

    Strong edge-colorings for k-degenerate graphs

    Full text link
    We prove that the strong chromatic index for each kk-degenerate graph with maximum degree Δ\Delta is at most (4k−2)Δ−k(2k−1)+1(4k-2)\Delta-k(2k-1)+1

    Some Results on incidence coloring, star arboricity and domination number

    Full text link
    Two inequalities bridging the three isolated graph invariants, incidence chromatic number, star arboricity and domination number, were established. Consequently, we deduced an upper bound and a lower bound of the incidence chromatic number for all graphs. Using these bounds, we further reduced the upper bound of the incidence chromatic number of planar graphs and showed that cubic graphs with orders not divisible by four are not 4-incidence colorable. The incidence chromatic numbers of Cartesian product, join and union of graphs were also determined.Comment: 8 page
    • …
    corecore