31 research outputs found

    Strong Baselines for Neural Semi-Supervised Learning under Domain Shift

    Get PDF
    Novel neural models have been proposed in recent years for learning under domain shift. Most models, however, only evaluate on a single task, on proprietary datasets, or compare to weak baselines, which makes comparison of models difficult. In this paper, we re-evaluate classic general-purpose bootstrapping approaches in the context of neural networks under domain shifts vs. recent neural approaches and propose a novel multi-task tri-training method that reduces the time and space complexity of classic tri-training. Extensive experiments on two benchmarks are negative: while our novel method establishes a new state-of-the-art for sentiment analysis, it does not fare consistently the best. More importantly, we arrive at the somewhat surprising conclusion that classic tri-training, with some additions, outperforms the state of the art. We conclude that classic approaches constitute an important and strong baseline.Comment: ACL 201

    Generalizing through Forgetting -- Domain Generalization for Symptom Event Extraction in Clinical Notes

    Full text link
    Symptom information is primarily documented in free-text clinical notes and is not directly accessible for downstream applications. To address this challenge, information extraction approaches that can handle clinical language variation across different institutions and specialties are needed. In this paper, we present domain generalization for symptom extraction using pretraining and fine-tuning data that differs from the target domain in terms of institution and/or specialty and patient population. We extract symptom events using a transformer-based joint entity and relation extraction method. To reduce reliance on domain-specific features, we propose a domain generalization method that dynamically masks frequent symptoms words in the source domain. Additionally, we pretrain the transformer language model (LM) on task-related unlabeled texts for better representation. Our experiments indicate that masking and adaptive pretraining methods can significantly improve performance when the source domain is more distant from the target domain
    corecore