31 research outputs found

    Backdoors to Acyclic SAT

    Full text link
    Backdoor sets, a notion introduced by Williams et al. in 2003, are certain sets of key variables of a CNF formula F that make it easy to solve the formula; by assigning truth values to the variables in a backdoor set, the formula gets reduced to one or several polynomial-time solvable formulas. More specifically, a weak backdoor set of F is a set X of variables such that there exits a truth assignment t to X that reduces F to a satisfiable formula F[t] that belongs to a polynomial-time decidable base class C. A strong backdoor set is a set X of variables such that for all assignments t to X, the reduced formula F[t] belongs to C. We study the problem of finding backdoor sets of size at most k with respect to the base class of CNF formulas with acyclic incidence graphs, taking k as the parameter. We show that 1. the detection of weak backdoor sets is W[2]-hard in general but fixed-parameter tractable for r-CNF formulas, for any fixed r>=3, and 2. the detection of strong backdoor sets is fixed-parameter approximable. Result 1 is the the first positive one for a base class that does not have a characterization with obstructions of bounded size. Result 2 is the first positive one for a base class for which strong backdoor sets are more powerful than deletion backdoor sets. Not only SAT, but also #SAT can be solved in polynomial time for CNF formulas with acyclic incidence graphs. Hence Result 2 establishes a new structural parameter that makes #SAT fixed-parameter tractable and that is incomparable with known parameters such as treewidth and clique-width. We obtain the algorithms by a combination of an algorithmic version of the Erd\"os-P\'osa Theorem, Courcelle's model checking for monadic second order logic, and new combinatorial results on how disjoint cycles can interact with the backdoor set

    Recognition and Exploitation of Gate Structure in SAT Solving

    Get PDF
    In der theoretischen Informatik ist das SAT-Problem der archetypische Vertreter der Klasse der NP-vollständigen Probleme, weshalb effizientes SAT-Solving im Allgemeinen als unmöglich angesehen wird. Dennoch erzielt man in der Praxis oft erstaunliche Resultate, wo einige Anwendungen Probleme mit Millionen von Variablen erzeugen, die von neueren SAT-Solvern in angemessener Zeit gelöst werden können. Der Erfolg von SAT-Solving in der Praxis ist auf aktuelle Implementierungen des Conflict Driven Clause-Learning (CDCL) Algorithmus zurückzuführen, dessen Leistungsfähigkeit weitgehend von den verwendeten Heuristiken abhängt, welche implizit die Struktur der in der industriellen Praxis erzeugten Instanzen ausnutzen. In dieser Arbeit stellen wir einen neuen generischen Algorithmus zur effizienten Erkennung der Gate-Struktur in CNF-Encodings von SAT Instanzen vor, und außerdem drei Ansätze, in denen wir diese Struktur explizit ausnutzen. Unsere Beiträge umfassen auch die Implementierung dieser Ansätze in unserem SAT-Solver Candy und die Entwicklung eines Werkzeugs für die verteilte Verwaltung von Benchmark-Instanzen und deren Attribute, der Global Benchmark Database (GBD)

    Constraint Satisfaction Techniques for Combinatorial Problems

    Get PDF
    The last two decades have seen extraordinary advances in tools and techniques for constraint satisfaction. These advances have in turn created great interest in their industrial applications. As a result, tools and techniques are often tailored to meet the needs of industrial applications out of the box. We claim that in the case of abstract combinatorial problems in discrete mathematics, the standard tools and techniques require special considerations in order to be applied effectively. The main objective of this thesis is to help researchers in discrete mathematics weave through the landscape of constraint satisfaction techniques in order to pick the right tool for the job. We consider constraint satisfaction paradigms like satisfiability of Boolean formulas and answer set programming, and techniques like symmetry breaking. Our contributions range from theoretical results to practical issues regarding tool applications to combinatorial problems. We prove search-versus-decision complexity results for problems about backbones and backdoors of Boolean formulas. We consider applications of constraint satisfaction techniques to problems in graph arrowing (specifically in Ramsey and Folkman theory) and computational social choice. Our contributions show how applying constraint satisfaction techniques to abstract combinatorial problems poses additional challenges. We show how these challenges can be addressed. Additionally, we consider the issue of trusting the results of applying constraint satisfaction techniques to combinatorial problems by relying on verified computations

    Generalising unit-refutation completeness and SLUR via nested input resolution

    Get PDF
    We introduce two hierarchies of clause-sets, SLUR_k and UC_k, based on the classes SLUR (Single Lookahead Unit Refutation), introduced in 1995, and UC (Unit refutation Complete), introduced in 1994. The class SLUR, introduced in [Annexstein et al, 1995], is the class of clause-sets for which unit-clause-propagation (denoted by r_1) detects unsatisfiability, or where otherwise iterative assignment, avoiding obviously false assignments by look-ahead, always yields a satisfying assignment. It is natural to consider how to form a hierarchy based on SLUR. Such investigations were started in [Cepek et al, 2012] and [Balyo et al, 2012]. We present what we consider the "limit hierarchy" SLUR_k, based on generalising r_1 by r_k, that is, using generalised unit-clause-propagation introduced in [Kullmann, 1999, 2004]. The class UC, studied in [Del Val, 1994], is the class of Unit refutation Complete clause-sets, that is, those clause-sets for which unsatisfiability is decidable by r_1 under any falsifying assignment. For unsatisfiable clause-sets F, the minimum k such that r_k determines unsatisfiability of F is exactly the "hardness" of F, as introduced in [Ku 99, 04]. For satisfiable F we use now an extension mentioned in [Ansotegui et al, 2008]: The hardness is the minimum k such that after application of any falsifying partial assignments, r_k determines unsatisfiability. The class UC_k is given by the clause-sets which have hardness <= k. We observe that UC_1 is exactly UC. UC_k has a proof-theoretic character, due to the relations between hardness and tree-resolution, while SLUR_k has an algorithmic character. The correspondence between r_k and k-times nested input resolution (or tree resolution using clause-space k+1) means that r_k has a dual nature: both algorithmic and proof theoretic. This corresponds to a basic result of this paper, namely SLUR_k = UC_k.Comment: 41 pages; second version improved formulations and added examples, and more details regarding future directions, third version further examples, improved and extended explanations, and more on SLUR, fourth version various additional remarks and editorial improvements, fifth version more explanations and references, typos corrected, improved wordin

    Translation of Algorithmic Descriptions of Discrete Functions to SAT with Applications to Cryptanalysis Problems

    Full text link
    In the present paper, we propose a technology for translating algorithmic descriptions of discrete functions to SAT. The proposed technology is aimed at applications in algebraic cryptanalysis. We describe how cryptanalysis problems are reduced to SAT in such a way that it should be perceived as natural by the cryptographic community. In~the theoretical part of the paper we justify the main principles of general reduction to SAT for discrete functions from a class containing the majority of functions employed in cryptography. Then, we describe the Transalg software tool developed based on these principles with SAT-based cryptanalysis specifics in mind. We demonstrate the results of applications of Transalg to construction of a number of attacks on various cryptographic functions. Some of the corresponding attacks are state of the art. We compare the functional capabilities of the proposed tool with that of other domain-specific software tools which can be used to reduce cryptanalysis problems to SAT, and also with the CBMC system widely employed in symbolic verification. The paper also presents vast experimental data, obtained using the SAT solvers that took first places at the SAT competitions in the recent several years

    Harnessing tractability in constraint satisfaction problems

    Get PDF
    The Constraint Satisfaction Problem (CSP) is a fundamental NP-complete problem with many applications in artificial intelligence. This problem has enjoyed considerable scientific attention in the past decades due to its practical usefulness and the deep theoretical questions it relates to. However, there is a wide gap between practitioners, who develop solving techniques that are efficient for industrial instances but exponential in the worst case, and theorists who design sophisticated polynomial-time algorithms for restrictions of CSP defined by certain algebraic properties. In this thesis we attempt to bridge this gap by providing polynomial-time algorithms to test for membership in a selection of major tractable classes. Even if the instance does not belong to one of these classes, we investigate the possibility of decomposing efficiently a CSP instance into tractable subproblems through the lens of parameterized complexity. Finally, we propose a general framework to adapt the concept of kernelization, central to parameterized complexity but hitherto rarely used in practice, to the context of constraint reasoning. Preliminary experiments on this last contribution show promising results
    corecore