661,756 research outputs found

    The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Get PDF
    Background: Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods: Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results: Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions: There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome measures, blinded assessors and long-term follow up are needed to assess the efficacy of stretching

    Stretching Homopolymers

    Full text link
    Force induced stretching of polymers is important in a variety of contexts. We have used theory and simulations to describe the response of homopolymers, with NN monomers, to force (ff) in good and poor solvents. In good solvents and for {{sufficiently large}} NN we show, in accord with scaling predictions, that the mean extension along the ff axis f\sim f for small ff, and f2/3\sim f^{{2/3}} (the Pincus regime) for intermediate values of ff. The theoretical predictions for \la Z\ra as a function of ff are in excellent agreement with simulations for N=100 and 1600. However, even with N=1600, the expected Pincus regime is not observed due to the the breakdown of the assumptions in the blob picture for finite NN. {{We predict the Pincus scaling in a good solvent will be observed for N105N\gtrsim 10^5}}. The force-dependent structure factors for a polymer in a poor solvent show that there are a hierarchy of structures, depending on the nature of the solvent. For a weakly hydrophobic polymer, various structures (ideal conformations, self-avoiding chains, globules, and rods) emerge on distinct length scales as ff is varied. A strongly hydrophobic polymer remains globular as long as ff is less than a critical value fcf_c. Above fcf_c, an abrupt first order transition to a rod-like structure occurs. Our predictions can be tested using single molecule experiments.Comment: 24 pages, 7 figure

    Stretching an heteropolymer

    Full text link
    We study the influence of some quenched disorder in the sequence of monomers on the entropic elasticity of long polymeric chains. Starting from the Kratky-Porod model, we show numerically that some randomness in the favoured angles between successive segments induces a change in the elongation versus force characteristics, and this change can be well described by a simple renormalisation of the elastic constant. The effective coupling constant is computed by an analytic study of the low force regime.Comment: Latex, 7 pages, 3 postscript figur

    Stable incremental deformation of a strip to high strain

    Get PDF
    This paper presents the effect of combined stretching and bending on the achieved strain in\ud incremental sheet forming ISF. A simple two dimensional model of strip undergoing stretching and\ud travelling three point bending in cyclic form is used. The numerical model presents the effect of the\ud ratio of stretching velocity to roll-set speed on the achieved strain and its distributio

    Glassy Aging with Modified Kohlrausch-Williams-Watts Form

    Get PDF
    In this report we address the question whether aging in the non equilibrium glassy state is controlled by the equilibrium alpha-relaxation process which occur at temperatures above Tg. Recently Lunkenheimer et. al. [Phys. Rev. Lett. 95, 055702 (2005)] proposed a model for the glassy aging data of dielectric relaxation using a modified Kohlrausch-Williams-Watts (KWW) form. The aging time dependence of the relaxation time is defined by these authors through a functional relation involving the corresponding frequency but the stretching exponent is same as the alpha-relaxation stretching exponent. We present here an alternative functional form directly involving the relaxation time itself. The proposed model fits the data of Lunkenheimer et. al. perfectly with a stretching exponent different from the alpha-relaxation stretching exponent.Comment: 1 TeX file, 10 eps figure

    Online Bin Stretching with Three Bins

    Full text link
    Online Bin Stretching is a semi-online variant of bin packing in which the algorithm has to use the same number of bins as an optimal packing, but is allowed to slightly overpack the bins. The goal is to minimize the amount of overpacking, i.e., the maximum size packed into any bin. We give an algorithm for Online Bin Stretching with a stretching factor of 11/8=1.37511/8 = 1.375 for three bins. Additionally, we present a lower bound of 45/33=1.3645/33 = 1.\overline{36} for Online Bin Stretching on three bins and a lower bound of 19/1419/14 for four and five bins that were discovered using a computer search.Comment: Preprint of a journal version. See version 2 for the conference paper. Conference paper split into two journal submissions; see arXiv:1601.0811

    Elastic moduli renormalization in self interacting stretchable polyelectrolytes

    Full text link
    We study the effect of intersegment interactions on the effective bending and stretching moduli of a semiflexible polymer chain with a finite stretching modulus. For an interaction potential of a screened Debye-H\" uckel type renormalization of the stretching modulus is derived on the same level of approximation as the celebrated Odijk-Skolnick-Fixman result for the bending modulus. The presence of mesoscopic intersegment interaction potentials couples the bending and stretching moduli in a manner different from that predicted by the macroscopic elasticity theory. We advocate a fundamental change in the perspective regarding the dependence of elastic moduli of a flexible polyelectrolyte on the ionic conditions: stretchability. Not only are the persistence length as well as the stretching modulus dependent on the salt conditions in the solution, they are fundamentally coupled via the mesoscopic intersegment interaction potential. The theory presented here compares favorably with recent experiments on DNA bending and stretching.Comment: 12 pages, 3 figure

    On the signature of tensile blobs in the scattering function of a stretched polymer

    Full text link
    We present Monte Carlo data for a linear chain with excluded volume subjected to a uniform stretching. Simulation of long chains (up to 6000 beads) at high stretching allows us to observe the signature of tensile blobs as a crossover in the scaling behavior of the chain scattering function for wave vectors perpendicular to stretching. These results and corresponding ones in the stretching direction allow us to verify for the first time Pincus prediction on scaling inside blobs. Outside blobs, the scattering function is well described by the Debye function for a stretched ideal chain.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
    corecore