4,297 research outputs found

    The weakness of being cohesive, thin or free in reverse mathematics

    Get PDF
    Informally, a mathematical statement is robust if its strength is left unchanged under variations of the statement. In this paper, we investigate the lack of robustness of Ramsey's theorem and its consequence under the frameworks of reverse mathematics and computable reducibility. To this end, we study the degrees of unsolvability of cohesive sets for different uniformly computable sequence of sets and identify different layers of unsolvability. This analysis enables us to answer some questions of Wang about how typical sets help computing cohesive sets. We also study the impact of the number of colors in the computable reducibility between coloring statements. In particular, we strengthen the proof by Dzhafarov that cohesiveness does not strongly reduce to stable Ramsey's theorem for pairs, revealing the combinatorial nature of this non-reducibility and prove that whenever kk is greater than â„“\ell, stable Ramsey's theorem for nn-tuples and kk colors is not computably reducible to Ramsey's theorem for nn-tuples and â„“\ell colors. In this sense, Ramsey's theorem is not robust with respect to his number of colors over computable reducibility. Finally, we separate the thin set and free set theorem from Ramsey's theorem for pairs and identify an infinite decreasing hierarchy of thin set theorems in reverse mathematics. This shows that in reverse mathematics, the strength of Ramsey's theorem is very sensitive to the number of colors in the output set. In particular, it enables us to answer several related questions asked by Cholak, Giusto, Hirst and Jockusch.Comment: 31 page

    Dominating the Erdos-Moser theorem in reverse mathematics

    Full text link
    The Erdos-Moser theorem (EM) states that every infinite tournament has an infinite transitive subtournament. This principle plays an important role in the understanding of the computational strength of Ramsey's theorem for pairs (RT^2_2) by providing an alternate proof of RT^2_2 in terms of EM and the ascending descending sequence principle (ADS). In this paper, we study the computational weakness of EM and construct a standard model (omega-model) of simultaneously EM, weak K\"onig's lemma and the cohesiveness principle, which is not a model of the atomic model theorem. This separation answers a question of Hirschfeldt, Shore and Slaman, and shows that the weakness of the Erdos-Moser theorem goes beyond the separation of EM from ADS proven by Lerman, Solomon and Towsner.Comment: 36 page

    Open questions about Ramsey-type statements in reverse mathematics

    Get PDF
    Ramsey's theorem states that for any coloring of the n-element subsets of N with finitely many colors, there is an infinite set H such that all n-element subsets of H have the same color. The strength of consequences of Ramsey's theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey's theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey's theorem.Comment: 15 page

    Pi01 encodability and omniscient reductions

    Full text link
    A set of integers AA is computably encodable if every infinite set of integers has an infinite subset computing AA. By a result of Solovay, the computably encodable sets are exactly the hyperarithmetic ones. In this paper, we extend this notion of computable encodability to subsets of the Baire space and we characterize the Π10\Pi^0_1 encodable compact sets as those who admit a non-empty Σ11\Sigma^1_1 subset. Thanks to this equivalence, we prove that weak weak K\"onig's lemma is not strongly computably reducible to Ramsey's theorem. This answers a question of Hirschfeldt and Jockusch.Comment: 9 page

    Iterative forcing and hyperimmunity in reverse mathematics

    Full text link
    The separation between two theorems in reverse mathematics is usually done by constructing a Turing ideal satisfying a theorem P and avoiding the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a forcing technique for iterating a computable non-reducibility in order to separate theorems over omega-models. In this paper, we present a modularized version of their framework in terms of preservation of hyperimmunity and show that it is powerful enough to obtain the same separations results as Wang did with his notion of preservation of definitions.Comment: 15 page

    Quantifying pervasive authentication: the case of the Hancke-Kuhn protocol

    Full text link
    As mobile devices pervade physical space, the familiar authentication patterns are becoming insufficient: besides entity authentication, many applications require, e.g., location authentication. Many interesting protocols have been proposed and implemented to provide such strengthened forms of authentication, but there are very few proofs that such protocols satisfy the required security properties. The logical formalisms, devised for reasoning about security protocols on standard computer networks, turn out to be difficult to adapt for reasoning about hybrid protocols, used in pervasive and heterogenous networks. We refine the Dolev-Yao-style algebraic method for protocol analysis by a probabilistic model of guessing, needed to analyze protocols that mix weak cryptography with physical properties of nonstandard communication channels. Applying this model, we provide a precise security proof for a proximity authentication protocol, due to Hancke and Kuhn, that uses a subtle form of probabilistic reasoning to achieve its goals.Comment: 31 pages, 2 figures; short version of this paper appeared in the Proceedings of MFPS 201

    Pragmatic Holism

    Get PDF
    The reductionist/holist debate seems an impoverished one, with many participants appearing to adopt a position first and constructing rationalisations second. Here I propose an intermediate position of pragmatic holism, that irrespective of whether all natural systems are theoretically reducible, for many systems it is completely impractical to attempt such a reduction, also that regardless if whether irreducible `wholes' exist, it is vain to try and prove this in absolute terms. This position thus illuminates the debate along new pragmatic lines, and refocusses attention on the underlying heuristics of learning about the natural world
    • …
    corecore