2 research outputs found

    Efficiently Extracting Randomness from Imperfect Stochastic Processes

    Get PDF
    We study the problem of extracting a prescribed number of random bits by reading the smallest possible number of symbols from non-ideal stochastic processes. The related interval algorithm proposed by Han and Hoshi has asymptotically optimal performance; however, it assumes that the distribution of the input stochastic process is known. The motivation for our work is the fact that, in practice, sources of randomness have inherent correlations and are affected by measurement's noise. Namely, it is hard to obtain an accurate estimation of the distribution. This challenge was addressed by the concepts of seeded and seedless extractors that can handle general random sources with unknown distributions. However, known seeded and seedless extractors provide extraction efficiencies that are substantially smaller than Shannon's entropy limit. Our main contribution is the design of extractors that have a variable input-length and a fixed output length, are efficient in the consumption of symbols from the source, are capable of generating random bits from general stochastic processes and approach the information theoretic upper bound on efficiency.Comment: 2 columns, 16 page

    Streaming Algorithms for Optimal Generation of Random Bits 1

    Get PDF
    Generating random bits from a source of biased coins (the biased is unknown) is a classical question that was originally studied by von Neumann. There are a number of known algorithms that have asymptotically optimal information efficiency, namely, the expected number of generated random bits per input bit is asymptotically close to the entropy of the source. However, only the original von Neumann algorithm has a ‘streaming property ’- it operates on a single input bit at a time and it generates random bits when possible, alas, it does not have an optimal information efficiency. The main contribution of this paper is an algorithm that generates random bit streams from biased coins, uses bounded space and runs in expected linear time. As the size of the allotted space increases, the algorithm approaches the information-theoretic upper bound on efficiency. In addition, we present a universal scheme for transforming an arbitrary algorithm for binary sources to manage the general source of an m-sided dice, hence, enabling the application of existing algorithms to general sources. We also consider extensions of our algorithm to correlated sources that are based on Markov chains. I
    corecore