68 research outputs found

    Sum of Us: Strategyproof Selection from the Selectors

    Full text link
    We consider directed graphs over a set of n agents, where an edge (i,j) is taken to mean that agent i supports or trusts agent j. Given such a graph and an integer k\leq n, we wish to select a subset of k agents that maximizes the sum of indegrees, i.e., a subset of k most popular or most trusted agents. At the same time we assume that each individual agent is only interested in being selected, and may misreport its outgoing edges to this end. This problem formulation captures realistic scenarios where agents choose among themselves, which can be found in the context of Internet search, social networks like Twitter, or reputation systems like Epinions. Our goal is to design mechanisms without payments that map each graph to a k-subset of agents to be selected and satisfy the following two constraints: strategyproofness, i.e., agents cannot benefit from misreporting their outgoing edges, and approximate optimality, i.e., the sum of indegrees of the selected subset of agents is always close to optimal. Our first main result is a surprising impossibility: for k \in {1,...,n-1}, no deterministic strategyproof mechanism can provide a finite approximation ratio. Our second main result is a randomized strategyproof mechanism with an approximation ratio that is bounded from above by four for any value of k, and approaches one as k grows

    Strategyproof Decision-Making in Panel Data Settings and Beyond

    Full text link
    We consider the classical problem of decision-making using panel data, in which a decision-maker gets noisy, repeated measurements of multiple units (or agents). We consider a setup where there is a pre-intervention period, when the principal observes the outcomes of each unit, after which the principal uses these observations to assign a treatment to each unit. Unlike this classical setting, we permit the units generating the panel data to be strategic, i.e. units may modify their pre-intervention outcomes in order to receive a more desirable intervention. The principal's goal is to design a strategyproof intervention policy, i.e. a policy that assigns units to their correct interventions despite their potential strategizing. We first identify a necessary and sufficient condition under which a strategyproof intervention policy exists, and provide a strategyproof mechanism with a simple closed form when one does exist. Along the way, we prove impossibility results for strategic multiclass classification, which may be of independent interest. When there are two interventions, we establish that there always exists a strategyproof mechanism, and provide an algorithm for learning such a mechanism. For three or more interventions, we provide an algorithm for learning a strategyproof mechanism if there exists a sufficiently large gap in the principal's rewards between different interventions. Finally, we empirically evaluate our model using real-world panel data collected from product sales over 18 months. We find that our methods compare favorably to baselines which do not take strategic interactions into consideration, even in the presence of model misspecification

    Machine Learning-powered Course Allocation

    Full text link
    We introduce a machine learning-powered course allocation mechanism. Concretely, we extend the state-of-the-art Course Match mechanism with a machine learning-based preference elicitation module. In an iterative, asynchronous manner, this module generates pairwise comparison queries that are tailored to each individual student. Regarding incentives, our machine learning-powered course match (MLCM) mechanism retains the attractive strategyproofness in the large property of Course Match. Regarding welfare, we perform computational experiments using a simulator that was fitted to real-world data. Our results show that, compared to Course Match, MLCM increases average student utility by 4%-9% and minimum student utility by 10%-21%, even with only ten comparison queries. Finally, we highlight the practicability of MLCM and the ease of piloting it for universities currently using Course Match
    • …
    corecore