1,038,371 research outputs found
Two-Stage Eagle Strategy with Differential Evolution
Efficiency of an optimization process is largely determined by the search
algorithm and its fundamental characteristics. In a given optimization, a
single type of algorithm is used in most applications. In this paper, we will
investigate the Eagle Strategy recently developed for global optimization,
which uses a two-stage strategy by combing two different algorithms to improve
the overall search efficiency. We will discuss this strategy with differential
evolution and then evaluate their performance by solving real-world
optimization problems such as pressure vessel and speed reducer design. Results
suggest that we can reduce the computing effort by a factor of up to 10 in many
applications
Convex Optimization for Linear Query Processing under Approximate Differential Privacy
Differential privacy enables organizations to collect accurate aggregates
over sensitive data with strong, rigorous guarantees on individuals' privacy.
Previous work has found that under differential privacy, computing multiple
correlated aggregates as a batch, using an appropriate \emph{strategy}, may
yield higher accuracy than computing each of them independently. However,
finding the best strategy that maximizes result accuracy is non-trivial, as it
involves solving a complex constrained optimization program that appears to be
non-linear and non-convex. Hence, in the past much effort has been devoted in
solving this non-convex optimization program. Existing approaches include
various sophisticated heuristics and expensive numerical solutions. None of
them, however, guarantees to find the optimal solution of this optimization
problem.
This paper points out that under (, )-differential privacy,
the optimal solution of the above constrained optimization problem in search of
a suitable strategy can be found, rather surprisingly, by solving a simple and
elegant convex optimization program. Then, we propose an efficient algorithm
based on Newton's method, which we prove to always converge to the optimal
solution with linear global convergence rate and quadratic local convergence
rate. Empirical evaluations demonstrate the accuracy and efficiency of the
proposed solution.Comment: to appear in ACM SIGKDD 201
- …
