5 research outputs found

    Strategies for Reduced-Order Models for Predicting the Statistical Responses and Uncertainty Quantification in Complex Turbulent Dynamical Systems

    Full text link
    Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among many complex systems in science and engineering. The existence of a strange attractor in the turbulent systems containing a large number of positive Lyapunov exponents results in a rapid growth of small uncertainties, requiring naturally a probabilistic characterization for the evolution of the turbulent system. Uncertainty quantification in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates such as the change in mean and variance for key physical quantities in their nonlinear responses to changes in external forcing parameters or uncertain initial data. One central issue in contemporary research is the development of a systematic methodology that can recover the crucial features of the natural system in statistical equilibrium (model fidelity) and improve the imperfect model prediction skill in response to various external perturbations (model sensitivity). A general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions with largest energy of a general class of damped and forced complex turbulent dynamical systems is discussed here. The methods are developed under a universal class of turbulent dynamical systems with quadratic nonlinearity that is representative in many applications in applied mathematics and engineering. The validity of general framework of reduced-order models is demonstrated on instructive stochastic triad models. Recent applications to two-layer baroclinic turbulence in the atmosphere and ocean with combinations of turbulent jets and vortices are also surveyed.Comment: 43 pages, 18 figure

    A Flux-Balanced Fluid Model for Collisional Plasma Edge Turbulence: Numerical Simulations with Different Aspect Ratios

    Full text link
    We investigate the drift wave -- zonal flow dynamics in a shearless slab geometry with the new flux-balanced Hasegawa-Wakatani model. As in previous Hasegawa-Wakatani models, we observe a sharp transition from a turbulence dominated regime to a zonal jet dominated regime as we decrease the plasma resistivity. However, unlike previous models, zonal structures are always present in the flux-balanced model, even for high resistivity, and strongly reduce the level of particle and vorticity flux. The more robust zonal jets also have a higher variability than in previous models, which is further enhanced when the computational domain is chosen to be elongated in the radial direction. In these cases, we observe complex multi-scale dynamics, with multiple jets interacting with one another, and intermittent bursts. We present a detailed statistical analysis which highlights how the changes in the aspect ratio of the computational domain affect the third-order statistical moments, and thus modify the turbulent dynamics.Comment: 20 pages, 16 figure

    Zonal Jet Creation from Secondary Instability of Drift Waves for Plasma Edge Turbulence

    Full text link
    A new strategy is presented to explain the creation and persistence of zonal flows widely observed in plasma edge turbulence. The core physics in the edge regime of the magnetic-fusion tokamaks can be described qualitatively by the one-state modified Hasegawa-Mima (MHM) model, which creates enhanced zonal flows and more physically relevant features in comparison with the familiar Charney-Hasegawa-Mima (CHM) model for both plasma and geophysical flows. The generation mechanism of zonal jets is displayed from the secondary instability analysis via nonlinear interactions with a background base state. Strong exponential growth in the zonal modes is induced due to a non-zonal drift wave base state in the MHM model, while stabilizing damping effect is shown with a zonal flow base state. Together with the selective decay effect from the dissipation, the secondary instability offers a complete characterization of the convergence process to the purely zonal structure. Direct numerical simulations with and without dissipation are carried out to confirm the instability theory. It shows clearly the emergence of a dominant zonal flow from pure non-zonal drift waves with small perturbation in the initial configuration. In comparison, the CHM model does not create instability in the zonal modes and usually converges to homogeneous turbulence.Comment: 16 pages, 9 figure

    A Flux-Balanced Fluid Model for Collisional Plasma Edge Turbulence: Model Derivation and Basic Physical Features

    Full text link
    We propose a new reduced fluid model for the study of the drift wave -- zonal flow dynamics in magnetically confined plasmas. Our model can be viewed as an extension of the classic Hasegawa-Wakatani (HW) model, and is based on an improved treatment of the electron dynamics parallel to the field lines, to guarantee a balanced electron flux on the magnetic surfaces. Our flux-balanced HW (bHW) model contains the same drift-wave instability as previous HW models, but unlike these models, it converges exactly to the modified Hasegawa-Mima model in the collisionless limit. We rely on direct numerical simulations to illustrate some of the key features of the bHW model, such as the enhanced variability in the turbulent fluctuations, and the existence of stronger and more turbulent zonal jets than the jets observed in other HW models, especially for high plasma resistivity. Our simulations also highlight the crucial role of the feedback of the third-order statistical moments in achieving a statistical equilibrium with strong zonal structures. Finally, we investigate the changes in the observed dynamics when more general dissipation effects are included, and in particular when we include the reduced model for ion Landau damping originally proposed by Wakatani and Hasegawa.Comment: 23 pages, 9 figure

    Linear Response Based Parameter Estimation in the Presence of Model Error

    Full text link
    Recently, we proposed a method to estimate parameters of stochastic dynamics based on the linear response statistics. The method rests upon a nonlinear least-squares problem that takes into account the response properties that stem from the Fluctuation-Dissipation Theory. In this article, we address an important issue that arises in the presence of model error. In particular, when the equilibrium density function is high dimensional and non-Gaussian, and in some cases, is unknown, the linear response statistics are inaccessible. We show that this issue can be resolved by fitting the imperfect model to appropriate marginal linear response statistics that can be approximated using the available data and parametric or nonparametric models. The effectiveness of the parameter estimation approach is demonstrated in the context of molecular dynamical models (Langevin dynamics) with a non-uniform temperature profile, where the modeling error is due to coarse-graining, and a PDE (non-Langevin dynamics) that exhibits spatiotemporal chaos, where the model error arises from a severe spectral truncation. In these examples, we show how the imperfect models, the Langevin equation with parameters estimated using the proposed scheme, can predict the nonlinear response statistics of the underlying dynamics under admissible external disturbances.Comment: 27 pages, 20 figure
    corecore