8,766 research outputs found

    Testing weighted splitting schemes on a one-column transport-chemistry model

    Get PDF
    In many transport-chemistry models, a huge system of ODE’s of the advection-diffusion-reaction type has to be integrated in time. Typically, this is done with the help of operator splitting. Rosenbrock schemes combined with approximate matrix factorization (ROS-AMF) are an alternative to operator splitting which does not suffer from splitting errors. However, implementation of ROS-AMF schemes often requires serious changes in the code. In this paper we test another classical second order splitting introduced by Strang in 1963, which, unlike the popular Strang splitting, seemed to be forgotten and rediscovered recently (partially due to its intrinsic parallellism). This splitting, called symmetrically weighted sequential (SWS) splitting, is simple and straightforward to apply, independent of the order of the operators and has an operator-level parallelism. In the experiments, the SWS scheme compares favorably to the Strang splitting, but is less accurate than ROS-AMF

    Palindromic 3-stage splitting integrators, a roadmap

    Get PDF
    The implementation of multi-stage splitting integrators is essentially the same as the implementation of the familiar Strang/Verlet method. Therefore multi-stage formulas may be easily incorporated into software that now uses the Strang/Verlet integrator. We study in detail the two-parameter family of palindromic, three-stage splitting formulas and identify choices of parameters that may outperform the Strang/Verlet method. One of these choices leads to a method of effective order four suitable to integrate in time some partial differential equations. Other choices may be seen as perturbations of the Strang method that increase efficiency in molecular dynamics simulations and in Hybrid Monte Carlo sampling.Comment: 20 pages, 8 figures, 2 table

    Efficient boundary corrected Strang splitting

    Full text link
    Strang splitting is a well established tool for the numerical integration of evolution equations. It allows the application of tailored integrators for different parts of the vector field. However, it is also prone to order reduction in the case of non-trivial boundary conditions. This order reduction can be remedied by correcting the boundary values of the intermediate splitting step. In this paper, three different approaches for constructing such a correction in the case of inhomogeneous Dirichlet, Neumann, and mixed boundary conditions are presented. Numerical examples that illustrate the effectivity and benefits of these corrections are included

    Solving Vertical Transport and Chemistry in Air Pollution Models.

    Get PDF
    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions

    Operator splittings and spatial approximations for evolution equations

    Get PDF
    The convergence of various operator splitting procedures, such as the sequential, the Strang and the weighted splitting, is investigated in the presence of a spatial approximation. To this end a variant of Chernoff's product formula is proved. The methods are applied to abstract partial delay differential equations.Comment: to appear in J. Evol. Equations. Reviewers comments are incorporate

    Operator splitting for the Benjamin-Ono equation

    Full text link
    In this paper we analyze operator splitting for the Benjamin-Ono equation, u_t = uu_x + Hu_xx, where H denotes the Hilbert transform. If the initial data are sufficiently regular, we show the convergence of both Godunov and Strang splitting.Comment: 18 Page
    corecore