53,868 research outputs found

    Bistability in the Shape Transition of Strained Islands

    Get PDF
    The equilibrium shape of a monatomic strained island on a substrate depends on the step free energies and the difference in surface stress between the island and the substrate. For small island sizes the step free energies dominate, resulting in compact islands. Beyond a critical island size, however, the strain energy becomes dominant and the island maximizes its perimeter, resulting in elongated islands. Here we show that for strained islands with force monopoles pointing in opposing directions at neighboring steps, a regime exists near the critical island size where both compact and elongated shapes can coexist

    Prepyramid-to-pyramid transition of SiGe islands on Si(001)

    Full text link
    The morphology of the first three-dimensional islands appearing during strained growth of SiGe alloys on Si(001) was investigated by scanning tunneling microscopy. High resolution images of individual islands and a statistical analysis of island shapes were used to reconstruct the evolution of the island shape as a function of size. As they grow, islands undergo a transition from completely unfacetted rough mounds (prepyramids) to partially {105} facetted islands and then they gradually evolve to {105} facetted pyramids. The results are in good agreement with the predictions of a recently proposed theoretical model

    Dynamics of elastically strained islands in presence of an anisotropic surface energy

    Full text link
    The equilibrium solutions and coarsening dynamics of strained semi-conductor islands are investigated analytically and numerically. We develop an analytical model to study the effect of surface energy anisotropy on the dynamics coarsening of islands. We propose a simple model to explain the effect of this anisotropy on the coarsening time. We find that the anisotropy slows down the coarsening. This effect is rationalised using a quasi-analytical description of the island profile

    Stable unidimensional arrays of coherent strained islands

    Full text link
    We investigate the equilibrium properties of arrays of coherent strained islands in heteroepitaxial thin films of bidimensional materials. The model we use takes into account only three essential ingredients : surface energies, elastic energies of the film and of the substrate and interaction energies between islands via the substrate. Using numerical simulations for a simple Lennard-Jones solid, we can assess the validity of the analytical expressions used to describe each of these contributions. A simple analytical expression is obtained for the total energy of the system. Minimizing this energy, we show that arrays of coherent islands can exist as stable configurations. Even in this simple approach, the quantitative results turn out to be very sensitive to some details of the surface energy.Comment: 24 pages, 7 figures. to be published in Surface Scienc

    Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands

    Full text link
    We study numerically the equilibrium shapes, shape transitions and dislocation nucleation of small strained epitaxial islands with a two-dimensional atomistic model, using simple interatomic pair potentials. We first map out the phase diagram for the equilibrium island shapes as a function of island size (up to N = 105 atoms) and lattice misfit with the substrate and show that nanoscopic islands have four generic equilibrium shapes, in contrast with predictions from the continuum theory of elasticity. For increasing substrate-adsorbate attraction, we find islands that form on top of a finite wetting layer as observed in Stranski-Krastanow growth. We also investigate energy barriers and transition paths for transitions between different shapes of the islands and for dislocation nucleation in initially coherent islands. In particular, we find that dislocations nucleate spontaneously at the edges of the adsorbate-substrate interface above a critical size or lattice misfit.Comment: 4 pages, 3 figures, uses wrapfig.sty and epsfig.st

    The Equilibrium Shape of Quantum Dots

    Full text link
    The formation of dislocation-free three-dimensional islands during the heteroepitaxial growth of lattice-mismatched materials has been observed experimentally for several material systems. The equilibrium shape of the islands is governed by the competition between the surface energy and the elastic relaxation energy of the islands as compared to the uniform strained film. As an exemplification we consider the experimentally intensively investigated growth of InAs quantum dots on a GaAs(001) substrate, deriving the equilibrium shape as a function of island volume. For this purpose InAs surface energies have been calculated within density-functional theory, and a continuum approach has been applied to compute the elastic relaxation energies.Comment: 10 pages, 4 figures. Submitted to Nuovo Cimento (November 27, 1996)

    Self-assembly of quantum dots: effect of neighbor islands on the wetting in coherent Stranski-Krastanov growth

    Full text link
    The wetting of the homogeneously strained wetting layer by dislocation-free three-dimensional islands belonging to an array has been studied. The array has been simulated as a chain of islands in 1+1 dimensions. It is found that the wetting depends on the density of the array, the size distribution and the shape of the neighbor islands. Implications for the self-assembly of quantum dots grown in the coherent Stranski-Krastanov mode are discussed.Comment: 4 pages, 6 figures, accepted version, minor change

    Step energies and equilibrium shape of strained monolayer islands

    Full text link
    Using a simple atomistic model of anharmonic nearest-neighbors interaction, we have calculated the step energies of strained hexagonal monolayer islands. These have been found to decrease with the absolute value of the misfit due to the strain relaxation at steps. The effect is significantly more pronounced in the case of positive misfit owing to the stronger repulsive interatomic forces. Furthermore, (111)-faceted steps are favored at positive misfit (compressed islands) and, to a lesser extent, (100)-faceted steps at negative misfits (tensile islands). The result is rationalized in terms of the different bonding geometries at step edges and a comparison with experiments is included. Thus, the equilibrium shape transforms from regular hexagons at zero misfit to threefold symmetric hexagons with increasing misfit.Comment: 6 pages, 5 figures, 1 table. Improved, finally accepted version including a new figure, a new table and several minor modifications resulting from discussions with referee

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    corecore