53,868 research outputs found
Bistability in the Shape Transition of Strained Islands
The equilibrium shape of a monatomic strained island on a substrate depends on the step free energies and the difference in surface stress between the island and the substrate. For small island sizes the step free energies dominate, resulting in compact islands. Beyond a critical island size, however, the strain energy becomes dominant and the island maximizes its perimeter, resulting in elongated islands. Here we show that for strained islands with force monopoles pointing in opposing directions at neighboring steps, a regime exists near the critical island size where both compact and elongated shapes can coexist
Prepyramid-to-pyramid transition of SiGe islands on Si(001)
The morphology of the first three-dimensional islands appearing during
strained growth of SiGe alloys on Si(001) was investigated by scanning
tunneling microscopy. High resolution images of individual islands and a
statistical analysis of island shapes were used to reconstruct the evolution of
the island shape as a function of size. As they grow, islands undergo a
transition from completely unfacetted rough mounds (prepyramids) to partially
{105} facetted islands and then they gradually evolve to {105} facetted
pyramids. The results are in good agreement with the predictions of a recently
proposed theoretical model
Dynamics of elastically strained islands in presence of an anisotropic surface energy
The equilibrium solutions and coarsening dynamics of strained semi-conductor
islands are investigated analytically and numerically. We develop an analytical
model to study the effect of surface energy anisotropy on the dynamics
coarsening of islands. We propose a simple model to explain the effect of this
anisotropy on the coarsening time. We find that the anisotropy slows down the
coarsening. This effect is rationalised using a quasi-analytical description of
the island profile
Stable unidimensional arrays of coherent strained islands
We investigate the equilibrium properties of arrays of coherent strained
islands in heteroepitaxial thin films of bidimensional materials. The model we
use takes into account only three essential ingredients : surface energies,
elastic energies of the film and of the substrate and interaction energies
between islands via the substrate. Using numerical simulations for a simple
Lennard-Jones solid, we can assess the validity of the analytical expressions
used to describe each of these contributions. A simple analytical expression is
obtained for the total energy of the system. Minimizing this energy, we show
that arrays of coherent islands can exist as stable configurations. Even in
this simple approach, the quantitative results turn out to be very sensitive to
some details of the surface energy.Comment: 24 pages, 7 figures. to be published in Surface Scienc
Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands
We study numerically the equilibrium shapes, shape transitions and
dislocation nucleation of small strained epitaxial islands with a
two-dimensional atomistic model, using simple interatomic pair potentials. We
first map out the phase diagram for the equilibrium island shapes as a function
of island size (up to N = 105 atoms) and lattice misfit with the substrate and
show that nanoscopic islands have four generic equilibrium shapes, in contrast
with predictions from the continuum theory of elasticity. For increasing
substrate-adsorbate attraction, we find islands that form on top of a finite
wetting layer as observed in Stranski-Krastanow growth. We also investigate
energy barriers and transition paths for transitions between different shapes
of the islands and for dislocation nucleation in initially coherent islands. In
particular, we find that dislocations nucleate spontaneously at the edges of
the adsorbate-substrate interface above a critical size or lattice misfit.Comment: 4 pages, 3 figures, uses wrapfig.sty and epsfig.st
The Equilibrium Shape of Quantum Dots
The formation of dislocation-free three-dimensional islands during the
heteroepitaxial growth of lattice-mismatched materials has been observed
experimentally for several material systems. The equilibrium shape of the
islands is governed by the competition between the surface energy and the
elastic relaxation energy of the islands as compared to the uniform strained
film. As an exemplification we consider the experimentally intensively
investigated growth of InAs quantum dots on a GaAs(001) substrate, deriving the
equilibrium shape as a function of island volume. For this purpose InAs surface
energies have been calculated within density-functional theory, and a continuum
approach has been applied to compute the elastic relaxation energies.Comment: 10 pages, 4 figures. Submitted to Nuovo Cimento (November 27, 1996)
Self-assembly of quantum dots: effect of neighbor islands on the wetting in coherent Stranski-Krastanov growth
The wetting of the homogeneously strained wetting layer by dislocation-free
three-dimensional islands belonging to an array has been studied. The array has
been simulated as a chain of islands in 1+1 dimensions. It is found that the
wetting depends on the density of the array, the size distribution and the
shape of the neighbor islands. Implications for the self-assembly of quantum
dots grown in the coherent Stranski-Krastanov mode are discussed.Comment: 4 pages, 6 figures, accepted version, minor change
Step energies and equilibrium shape of strained monolayer islands
Using a simple atomistic model of anharmonic nearest-neighbors interaction,
we have calculated the step energies of strained hexagonal monolayer islands.
These have been found to decrease with the absolute value of the misfit due to
the strain relaxation at steps. The effect is significantly more pronounced in
the case of positive misfit owing to the stronger repulsive interatomic forces.
Furthermore, (111)-faceted steps are favored at positive misfit (compressed
islands) and, to a lesser extent, (100)-faceted steps at negative misfits
(tensile islands). The result is rationalized in terms of the different bonding
geometries at step edges and a comparison with experiments is included. Thus,
the equilibrium shape transforms from regular hexagons at zero misfit to
threefold symmetric hexagons with increasing misfit.Comment: 6 pages, 5 figures, 1 table. Improved, finally accepted version
including a new figure, a new table and several minor modifications resulting
from discussions with referee
Equilibrium shapes and energies of coherent strained InP islands
The equilibrium shapes and energies of coherent strained InP islands grown on
GaP have been investigated with a hybrid approach that has been previously
applied to InAs islands on GaAs. This combines calculations of the surface
energies by density functional theory and the bulk deformation energies by
continuum elasticity theory. The calculated equilibrium shapes for different
chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001)
top surface. They compare quite well with recent atomic-force microscopy data.
Thus in the InP/GaInP-system a considerable equilibration of the individual
islands with respect to their shapes can be achieved. We discuss the
implications of our results for the Ostwald ripening of the coherent InP
islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
- …
