389 research outputs found

    Fundamental Limits of Cloud and Cache-Aided Interference Management with Multi-Antenna Edge Nodes

    Get PDF
    In fog-aided cellular systems, content delivery latency can be minimized by jointly optimizing edge caching and transmission strategies. In order to account for the cache capacity limitations at the Edge Nodes (ENs), transmission generally involves both fronthaul transfer from a cloud processor with access to the content library to the ENs, as well as wireless delivery from the ENs to the users. In this paper, the resulting problem is studied from an information-theoretic viewpoint by making the following practically relevant assumptions: 1) the ENs have multiple antennas; 2) only uncoded fractional caching is allowed; 3) the fronthaul links are used to send fractions of contents; and 4) the ENs are constrained to use one-shot linear precoding on the wireless channel. Assuming offline proactive caching and focusing on a high signal-to-noise ratio (SNR) latency metric, the optimal information-theoretic performance is investigated under both serial and pipelined fronthaul-edge transmission modes. The analysis characterizes the minimum high-SNR latency in terms of Normalized Delivery Time (NDT) for worst-case users' demands. The characterization is exact for a subset of system parameters, and is generally optimal within a multiplicative factor of 3/2 for the serial case and of 2 for the pipelined case. The results bring insights into the optimal interplay between edge and cloud processing in fog-aided wireless networks as a function of system resources, including the number of antennas at the ENs, the ENs' cache capacity and the fronthaul capacity.Comment: 34 pages, 15 figures, submitte

    How Much Can D2D Communication Reduce Content Delivery Latency in Fog Networks with Edge Caching?

    Get PDF
    A Fog-Radio Access Network (F-RAN) is studied in which cache-enabled Edge Nodes (ENs) with dedicated fronthaul connections to the cloud aim at delivering contents to mobile users. Using an information-theoretic approach, this work tackles the problem of quantifying the potential latency reduction that can be obtained by enabling Device-to-Device (D2D) communication over out-of-band broadcast links. Following prior work, the Normalized Delivery Time (NDT) --- a metric that captures the high signal-to-noise ratio worst-case latency --- is adopted as the performance criterion of interest. Joint edge caching, downlink transmission, and D2D communication policies based on compress-and-forward are proposed that are shown to be information-theoretically optimal to within a constant multiplicative factor of two for all values of the problem parameters, and to achieve the minimum NDT for a number of special cases. The analysis provides insights on the role of D2D cooperation in improving the delivery latency.Comment: Submitted to the IEEE Transactions on Communication

    Online edge caching and wireless delivery in fog-aided networks

    Get PDF
    Multimedia content is the significant fraction of transferred data over the wireless medium in the modern cellular and wireless communication networks. To improve the quality of experience perceived by users, one promising solution is to push the most popular contents as close as to users, also known as the edge of network. Storing content at the edge nodes (ENs) or base stations (BSs) is called caching . In Fog Radio Access Network (F-RAN), each EN is equipped with a cache as well as a fronthaul connection to the content server. Among the new design problems raised by the outlined scenarios, two key issues are addressed in this dissertation: 1) How to utilize cache and fronthaul resources while taking into account the wireless channel impairments; 2) How to incorporate the time-variability of popular set in the performance evaluation of F-RAN. These aspects are investigated by using information-theoretic models, obtaining fundamental insights that have been corroborated by various illustrative examples. To address point 1), two scenarios are investigated. First, a single-cell scenario with two transmitters is considered. A fog-aided small-cell BS as one of the transmitters and a cloud-aided macro-cell BS as the second transmitter collaborate with each other to send the requested content over a partially connected wireless channel. The intended and interference channels are modeled by erasure channels. Assuming a static set of popular contents, offline caching maps the library of files to cached contents stored at small-cell BS such that the cache capacity requirement is met. The delivery time per bit (DTB) is adopted as a measure of the coding latency, that is, the duration of the transmission block, required for reliable delivery. It is proved that optimal DTB is a linear decreasing function of cache capacity as well as inversely proportional with capacity of fronthaul link. In the second scenario, the same single-cell model is used with the only caveat that the set of popular files is time-varying. In this case, online caching maps the library of files to cached contents at small-cell BS. Thanks to availability of popular set at macro-BS, the DTB is finite and has upper and lower bounds which are functions of system resources i.e., cache and fronthaul link capacities. As for point 2), the model is comprised of an arbitrary number of ENs and users connected through an interference-limited wireless channel at high-SNR regime. All equally important ENs are benefited from cache capacity as well as fronthaul connection to the content server. The time-variability of popular set necessitates online caching to enable ENs keep track of changes in the popular set. The analysis is centered on the characterization of the long-term Normalized Delivery Time (NDT), which captures the temporal dependence of the coding latencies accrued across multiple time slots in the high-SNR regime. Online edge caching and delivery schemes based on reactive and proactive caching principles are investigated for both serial and pipelined transmission modes across fronthaul and edge segments. The outcome of analytical results provides a controversial view of contemporary research on the edge caching. It is proved that with a time-varying set of popular files, the capacity of fronthaul link between ENs and content server set a fundamental limit on the system performance. This is due to the fact that the original information source is content server and the only way to retrieve information is via fronthaul links. While edge caching can provide some gains in term of reduced latency, the gain diminishes as a result of the fact that the cached content is prone to be outdated with time-varying popularity

    Delivery Time Minimization in Edge Caching: Synergistic Benefits of Subspace Alignment and Zero Forcing

    Full text link
    An emerging trend of next generation communication systems is to provide network edges with additional capabilities such as additional storage resources in the form of caches to reduce file delivery latency. To investigate this aspect, we study the fundamental limits of a cache-aided wireless network consisting of one central base station, MM transceivers and KK receivers from a latency-centric perspective. We use the normalized delivery time (NDT) to capture the per-bit latency for the worst-case file request pattern at high signal-to-noise ratios (SNR), normalized with respect to a reference interference-free system with unlimited transceiver cache capabilities. For various special cases with M={1,2}M=\{1,2\} and K={1,2,3}K=\{1,2,3\} that satisfy M+K≤4M+K\leq 4, we establish the optimal tradeoff between cache storage and latency. This is facilitated through establishing a novel converse (for arbitrary MM and KK) and an achievability scheme on the NDT. Our achievability scheme is a synergistic combination of multicasting, zero-forcing beamforming and interference alignment.Comment: submitted to ICC 2018; fixed some typo
    • …
    corecore