296 research outputs found

    An Analysis of Storage Virtualization

    Get PDF
    Investigating technologies and writing expansive documentation on their capabilities is like hitting a moving target. Technology is evolving, growing, and expanding what it can do each and every day. This makes it very difficult when trying to snap a line and investigate competing technologies. Storage virtualization is one of those moving targets. Large corporations develop software and hardware solutions that try to one up the competition by releasing firmware and patch updates to include their latest developments. Some of their latest innovations include differing RAID levels, virtualized storage, data compression, data deduplication, file deduplication, thin provisioning, new file system types, tiered storage, solid state disk, and software updates to coincide these technologies with their applicable hardware. Even data center environmental considerations like reusable energies, data center environmental characteristics, and geographic locations are being used by companies both small and large to reduce operating costs and limit environmental impacts. Companies are even moving to an entire cloud based setup to limit their environmental impact as it could be cost prohibited to maintain your own corporate infrastructure. The trifecta of integrating smart storage architectures to include storage virtualization technologies, reducing footprint to promote energy savings, and migrating to cloud based services will ensure a long-term sustainable storage subsystem

    Distributed exact deduplication for primary storage infrastructures

    Get PDF
    Lecture Notes in Computer Science, Volume 8460, 2014Deduplication of primary storage volumes in a cloud computing environment is increasingly desirable, as the resulting space savings contribute to the cost effectiveness of a large scale multi-tenant infrastructure. However, traditional archival and backup deduplication systems impose prohibitive overhead for latency-sensitive applications deployed at these infrastructures while, current primary deduplication systems rely on special cluster filesystems, centralized components, or restrictive workload assumptions. We present DEDIS, a fully-distributed and dependable system that performs exact and cluster-wide background deduplication of primary storage. DEDIS does not depend on data locality and works on top of any unsophisticated storage backend, centralized or distributed, that exports a basic shared block device interface. The evaluation of an open-source prototype shows that DEDIS scales out and adds negligible overhead even when deduplication and intensive storage I/O run simultaneously.(undefined

    Doctor of Philosophy

    Get PDF
    dissertationIn the past few years, we have seen a tremendous increase in digital data being generated. By 2011, storage vendors had shipped 905 PB of purpose-built backup appliances. By 2013, the number of objects stored in Amazon S3 had reached 2 trillion. Facebook had stored 20 PB of photos by 2010. All of these require an efficient storage solution. To improve space efficiency, compression and deduplication are being widely used. Compression works by identifying repeated strings and replacing them with more compact encodings while deduplication partitions data into fixed-size or variable-size chunks and removes duplicate blocks. While we have seen great improvements in space efficiency from these two approaches, there are still some limitations. First, traditional compressors are limited in their ability to detect redundancy across a large range since they search for redundant data in a fine-grain level (string level). For deduplication, metadata embedded in an input file changes more frequently, and this introduces more unnecessary unique chunks, leading to poor deduplication. Cloud storage systems suffer from unpredictable and inefficient performance because of interference among different types of workloads. This dissertation proposes techniques to improve the effectiveness of traditional compressors and deduplication in improving space efficiency, and a new IO scheduling algorithm to improve performance predictability and efficiency for cloud storage systems. The common idea is to utilize similarity. To improve the effectiveness of compression and deduplication, similarity in content is used to transform an input file into a compression- or deduplication-friendly format. We propose Migratory Compression, a generic data transformation that identifies similar data in a coarse-grain level (block level) and then groups similar blocks together. It can be used as a preprocessing stage for any traditional compressor. We find metadata have a huge impact in reducing the benefit of deduplication. To isolate the impact from metadata, we propose to separate metadata from data. Three approaches are presented for use cases with different constrains. For the commonly used tar format, we propose Migratory Tar: a data transformation and also a new tar format that deduplicates better. We also present a case study where we use deduplication to reduce storage consumption for storing disk images, while at the same time achieving high performance in image deployment. Finally, we apply the same principle of utilizing similarity in IO scheduling to prevent interference between random and sequential workloads, leading to efficient, consistent, and predictable performance for sequential workloads and a high disk utilization

    A survey and classification of storage deduplication systems

    Get PDF
    The automatic elimination of duplicate data in a storage system commonly known as deduplication is increasingly accepted as an effective technique to reduce storage costs. Thus, it has been applied to different storage types, including archives and backups, primary storage, within solid state disks, and even to random access memory. Although the general approach to deduplication is shared by all storage types, each poses specific challenges and leads to different trade-offs and solutions. This diversity is often misunderstood, thus underestimating the relevance of new research and development. The first contribution of this paper is a classification of deduplication systems according to six criteria that correspond to key design decisions: granularity, locality, timing, indexing, technique, and scope. This classification identifies and describes the different approaches used for each of them. As a second contribution, we describe which combinations of these design decisions have been proposed and found more useful for challenges in each storage type. Finally, outstanding research challenges and unexplored design points are identified and discussed.This work is funded by the European Regional Development Fund (EDRF) through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the Fundacao para a Ciencia e a Tecnologia (FCT; Portuguese Foundation for Science and Technology) within project RED FCOMP-01-0124-FEDER-010156 and the FCT by PhD scholarship SFRH-BD-71372-2010
    • …
    corecore