2 research outputs found

    Stock Portfolio Prediction by Multi-Target Decision Support

    Get PDF
    Investing in the stock market is a complex process due to its high volatility caused by factors as exchange rates, political events, inflation and the market history. To support investor's decisions, the prediction of future stock price and economic metrics is valuable. With the hypothesis that there is a relation among investment performance indicators,  the goal of this paper was exploring multi-target regression (MTR) methods to estimate 6 different indicators and finding out the method that would best suit in an automated prediction tool for decision support regarding predictive performance. The experiments were based on 4 datasets, corresponding to 4 different time periods, composed of 63 combinations of weights of stock-picking concepts each, simulated in the US stock market. We compared traditional machine learning approaches with seven state-of-the-art MTR solutions: Stacked Single Target, Ensemble of Regressor Chains, Deep Structure  for Tracking Asynchronous Regressor Stacking,   Deep  Regressor Stacking, Multi-output Tree Chaining,  Multi-target Augment Stacking  and Multi-output Random Forest (MORF). With the exception of MORF, traditional approaches and the MTR methods were evaluated with Extreme Gradient Boosting, Random Forest and Support Vector Machine regressors. By means of extensive experimental evaluation, our results showed that the most recent MTR solutions can achieve suitable predictive performance, improving all the scenarios (14.70% in the best one, considering all target variables and periods). In this sense, MTR is a proper strategy for building stock market decision support system based on prediction models

    Towards meta-learning for multi-target regression problems

    Full text link
    Several multi-target regression methods were devel-oped in the last years aiming at improving predictive performanceby exploring inter-target correlation within the problem. However, none of these methods outperforms the others for all problems. This motivates the development of automatic approachesto recommend the most suitable multi-target regression method. In this paper, we propose a meta-learning system to recommend the best predictive method for a given multi-target regression problem. We performed experiments with a meta-dataset generated by a total of 648 synthetic datasets. These datasets were created to explore distinct inter-targets characteristics toward recommending the most promising method. In experiments, we evaluated four different algorithms with different biases as meta-learners. Our meta-dataset is composed of 58 meta-features, based on: statistical information, correlation characteristics, linear landmarking, from the distribution and smoothness of the data, and has four different meta-labels. Results showed that induced meta-models were able to recommend the best methodfor different base level datasets with a balanced accuracy superior to 70% using a Random Forest meta-model, which statistically outperformed the meta-learning baselines.Comment: To appear on the 8th Brazilian Conference on Intelligent Systems (BRACIS
    corecore