5,546 research outputs found

    Analysis and Synthesis Methods for Nonlinear Network Systems

    Get PDF
    Over the past two decades the interactions between systems and their control components have undergone some significant changes. These interactions are no more localized, but usually take place over a network and even the control components may be remotely located, thus involving aspects of communication in control systems. Furthermore, the last decade has also seen a surge in intermingling ideas from control and communication and their application to biological systems, power systems giving rise to new research areas like Networked Control Systems (NCS), Cyber-Physical Systems (CPS), Gene Regulatory Networks (GRN) to name a few. This has led researchers to study control systems with practical constraints imposed on them. One such practical constraint identified as a major challenge, is the fragility of control systems and performance degradation, when the interconnection is not reliable. Design of controllers and estimators for such systems needs to take into account these constraints and mitigate them, to ensure sufficient robustness against unreliability of the interconnection. Considerable research has been done over the past decade in analyzing these new challenges and developing design tools to extract desired performance. Control over communication channels is one such widely researched area where the effect of unreliable interconnection on the stability performance of the system has been studied. The reliability of communication could manifest in various ways like sensor failure at output measurement, control actuator failure, interconnection links failures in the form of packet erasure channel, fading channel, quantization etc. Significant research progress has been made, in areas of control and estimation over unreliable communication links, consensus over unreliable network interconnections, etc., albeit the work has dealt with linear time invariant (LTI) systems theory. This has led to fruitful results for special cases of packet-drop communication channel modeled as a Bernoulli erasure channel. In the case of linear systems these results have demonstrated a connection between the performance characteristics of the interconnection and the expansion or destabilizing characteristics of the linear system, in obtaining desired performance of the closed loop system. Most of the current research for control over communication channels have focused on LTI plant dynamics. Furthermore the results involving nonlinear plant dynamics have reverted to local linearization techniques. It is well-known that for nonlinear systems, results based on local linearization at an equilibrium point will be local in nature and does not account for the global dynamics of the nonlinear system. For the proposed applications of network control systems to electric power grid and biological networks it is essential to develop results for the analysis of nonlinear systems over networks. In this work, we are primarily interested in the interaction of nonlinear systems and controllers over unreliable interconnections modelled as a stochastic multiplicative uncertainty. We provide analysis and synthesis methods for the control and observation of uncertain nonlinear network controlled systems. Our analysis methods indicate, fundamental limitations arise in the stabilization and observation of nonlinear systems over uncertain channels. Our main result provides the limitation for observation of nonlinear system over erasure channel expressed in terms of the probability of erasure and positive Lyapunov exponents of the open loop nonlinear plant. The positive Lyapunov exponents are measure of dynamical complexity and comparing our results with existing results for LTI systems, we show that Lyapunov exponents emerge as a natural generalization of eigenvalues from linear to nonlinear systems. Entropy is another measure of dynamical complexity. Using results from ergodic theory of dynamical systems we also relate the limitation for stabilization and observation with the entropy corresponding to the invariant measure capturing the global dynamics of the nonlinear systems. Existing Bode-like fundamental limitation results for nonlinear systems relate limitation for stabilization with the entropy corresponding to the invariant measure at the equilibrium point. Our results are the first to connect the limitation for stabilization with the entropy corresponding to invariant measure other than the one associated with equilibrium point. Our synthesis methods for the design of robust controller and observer against uncertain channels revolves around special class of nonlinear systems -Lure systems. These systems are essentially linear systems with sector-bounded nonlinearity in the feedback loop. For this special class of nonlinear systems, we delve into the theoretical tools of absolute stability to obtain some synthesis methods which provide design criteria for nonlinear systems over unreliable interconnections. Stability of Lur\u27e systems is a special case of the stability of interconnected passive systems. Thus we can characterize the unreliability of the interconnection, that guarantees the desired performance for Lur\u27e systems, in terms of the passivity of the linear system. Passivity theory is a rich theory with wide spread applications to nonlinear controller design and observation, which extends ideas of system stability to input-output systems using the ideas of dissipativity. Our synthesis methods developed for Lure systems with input and output stochastic channel uncertainties provide natural extension of the powerful passivity based synthesis tools developed for deterministic Lure systems. In particular, our results help understand the trade-off between passivity and stochastic uncertainty in feedback control systems

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Stochastic Stability Analysis of Discrete Time System Using Lyapunov Measure

    Full text link
    In this paper, we study the stability problem of a stochastic, nonlinear, discrete-time system. We introduce a linear transfer operator-based Lyapunov measure as a new tool for stability verification of stochastic systems. Weaker set-theoretic notion of almost everywhere stochastic stability is introduced and verified, using Lyapunov measure-based stochastic stability theorems. Furthermore, connection between Lyapunov functions, a popular tool for stochastic stability verification, and Lyapunov measures is established. Using the duality property between the linear transfer Perron-Frobenius and Koopman operators, we show the Lyapunov measure and Lyapunov function used for the verification of stochastic stability are dual to each other. Set-oriented numerical methods are proposed for the finite dimensional approximation of the Perron-Frobenius operator; hence, Lyapunov measure is proposed. Stability results in finite dimensional approximation space are also presented. Finite dimensional approximation is shown to introduce further weaker notion of stability referred to as coarse stochastic stability. The results in this paper extend our earlier work on the use of Lyapunov measures for almost everywhere stability verification of deterministic dynamical systems ("Lyapunov Measure for Almost Everywhere Stability", {\it IEEE Trans. on Automatic Control}, Vol. 53, No. 1, Feb. 2008).Comment: Proceedings of American Control Conference, Chicago IL, 201
    • …
    corecore