3,810 research outputs found

    Stochastic Quantization of Scalar Fields in Einstein and Rindler Spacetime

    Full text link
    We consider the stochastic quantization method for scalar fields defined in a curved manifold and also in a flat space-time with event horizon. The two-point function associated to a massive self-interacting scalar field is evaluated, up to the first order level in the coupling constant, for the case of an Einstein and also a Rindler Euclidean metric, respectively. Its value for the asymptotic limit of the Markov parameter is exhibited. The divergences therein are taken care of by employing a covariant stochastic regularization

    Stochastic quantization of the linearized gravitational field

    Get PDF
    Stochastic field equations for linearized gravity are presented. The theory is compared with the usual quantum field theory and questions of Lorentz covariance are discussed. The classical radiation approximation is also presented.Comment: 14 page

    Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes

    Full text link
    We study the fractional gravity for spacetimes with non-integer dimensions. Our constructions are based on a geometric formalism with the fractional Caputo derivative and integral calculus adapted to nonolonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange-Finsler and Hamilton-Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, fractional ellipsoid gravitational configurations and imbedding of such objects in fractional solitonic backgrounds.Comment: latex2e, 11pt, 40 pages with table of conten

    On the Renormalizability of Horava-Lifshitz-type Gravities

    Full text link
    In this note, we discuss the renormalizability of Horava-Lifshitz-type gravity theories. Using the fact that Horava-Lifshitz gravity is very closely related to the stochastic quantization of topologically massive gravity, we show that the renormalizability of HL gravity only depends on the renormalizability of topologically massive gravity. This is a consequence of the BRST and time-reversal symmetries pertinent to theories satisfying the detailed balance condition.Comment: 13 pages, references added, typos fixe

    Cosmological perturbations from stochastic gravity

    Get PDF
    In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large scale structure formation are the quantum fluctuations of the inflaton field. These are usually computed using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for computing the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de-Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field such as Starobinsky's trace-anomaly driven inflation or when calculating corrections due to non-linear quantum effects in the usual inflaton driven models.Comment: 29 pages, REVTeX; minor changes, additional appendix with an alternative proof of the equivalence between stochastic and quantum correlation functions as well as an exact argument showing that the correlation function of curvature perturbations remains constant in time for superhorizon modes, which clarifies a recent claim in arXiv:0710.5342v

    Quantum corrected geodesics

    Get PDF
    We compute the graviton-induced corrections to the trajectory of a classical test particle. We show that the motion of the test particle is governed by an effective action given by the expectation value (with respect to the graviton state) of the classical action. We analyze the quantum corrected equations of motion for the test particle in two particular backgrounds: a Robertson Walker spacetime and a 2+1 dimensional spacetime with rotational symmetry. In both cases we show that the quantum corrected trajectory is not a geodesic of the background metric.Comment: LaTeX file, 15 pages, no figure

    The Noise of Gravitons

    Full text link
    We show that when the gravitational field is treated quantum-mechanically, it induces fluctuations -- noise -- in the lengths of the arms of gravitational wave detectors. The characteristics of the noise depend on the quantum state of the gravitational field, and can be calculated exactly in several interesting cases. For coherent states the noise is very small, but it can be greatly enhanced in thermal and (especially) squeezed states. Detection of this fundamental noise would constitute direct evidence for the quantization of gravity and the existence of gravitons.Comment: First prize in the Gravity Research Foundation Essay Competition. 6 page
    corecore