256 research outputs found

    Security Games with Information Leakage: Modeling and Computation

    Full text link
    Most models of Stackelberg security games assume that the attacker only knows the defender's mixed strategy, but is not able to observe (even partially) the instantiated pure strategy. Such partial observation of the deployed pure strategy -- an issue we refer to as information leakage -- is a significant concern in practical applications. While previous research on patrolling games has considered the attacker's real-time surveillance, our settings, therefore models and techniques, are fundamentally different. More specifically, after describing the information leakage model, we start with an LP formulation to compute the defender's optimal strategy in the presence of leakage. Perhaps surprisingly, we show that a key subproblem to solve this LP (more precisely, the defender oracle) is NP-hard even for the simplest of security game models. We then approach the problem from three possible directions: efficient algorithms for restricted cases, approximation algorithms, and heuristic algorithms for sampling that improves upon the status quo. Our experiments confirm the necessity of handling information leakage and the advantage of our algorithms

    A Stochastic Surveillance Stackelberg Game: Co-Optimizing Defense Placement and Patrol Strategy

    Full text link
    Stochastic patrol routing is known to be advantageous in adversarial settings; however, the optimal choice of stochastic routing strategy is dependent on a model of the adversary. We adopt a worst-case omniscient adversary model from the literature and extend the formulation to accommodate heterogeneous defenses at the various nodes of the graph. Introducing this heterogeneity leads to interesting new patrol strategies. We identify efficient methods for computing these strategies in certain classes of graphs. We assess the effectiveness of these strategies via comparison to an upper bound on the value of the game. Finally, we leverage the heterogeneous defense formulation to develop novel defense placement algorithms that complement the patrol strategies.Comment: 9 pages, 1 figure, jointly submitted to the IEEE Control Systems Letters and the 2024 American Control Conference. Replaced in response to reviewer feedbac

    Compact Representation of Value Function in Partially Observable Stochastic Games

    Full text link
    Value methods for solving stochastic games with partial observability model the uncertainty about states of the game as a probability distribution over possible states. The dimension of this belief space is the number of states. For many practical problems, for example in security, there are exponentially many possible states which causes an insufficient scalability of algorithms for real-world problems. To this end, we propose an abstraction technique that addresses this issue of the curse of dimensionality by projecting high-dimensional beliefs to characteristic vectors of significantly lower dimension (e.g., marginal probabilities). Our two main contributions are (1) novel compact representation of the uncertainty in partially observable stochastic games and (2) novel algorithm based on this compact representation that is based on existing state-of-the-art algorithms for solving stochastic games with partial observability. Experimental evaluation confirms that the new algorithm over the compact representation dramatically increases the scalability compared to the state of the art
    • …
    corecore