2,140 research outputs found

    Run-time Energy Management for Mobiles

    Get PDF
    Due to limited energy resources, mobile computing requires an energy-efficient a rchitecture. The dynamic nature of a mobile environment demands an architecture that allows adapting to (quickly) changing conditions. The mobile has to adapt d ynamically to new circumstances in the best suitable manner. The hardware and so ftware architecture should be able to support such adaptability and minimize the energy consumption by making resource allocation decisions at run-time. To make these decisions effective, a tradeoff has to be made between computation , communication and initialization costs (both time and energy). This paper describes our approach to construct a model that supports taking such decisions

    Iterative Equalization and Source Decoding for Vector Quantized Sources

    No full text
    In this contribution an iterative (turbo) channel equalization and source decoding scheme is considered. In our investigations the source is modelled as a Gaussian-Markov source, which is compressed with the aid of vector quantization. The communications channel is modelled as a time-invariant channel contaminated by intersymbol interference (ISI). Since the ISI channel can be viewed as a rate-1 encoder and since the redundancy of the source cannot be perfectly removed by source encoding, a joint channel equalization and source decoding scheme may be employed for enhancing the achievable performance. In our study the channel equalization and the source decoding are operated iteratively on a bit-by-bit basis under the maximum aposteriori (MAP) criterion. The channel equalizer accepts the a priori information provided by the source decoding and also extracts extrinsic information, which in turn acts as a priori information for improving the source decoding performance. Simulation results are presented for characterizing the achievable performance of the iterative channel equalization and source decoding scheme. Our results show that iterative channel equalization and source decoding is capable of achieving an improved performance by efficiently exploiting the residual redundancy of the vector quantization assisted source coding

    Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning

    Get PDF
    Federated learning is a distributed framework for training machine learning models over the data residing at mobile devices, while protecting the privacy of individual users. A major bottleneck in scaling federated learning to a large number of users is the overhead of secure model aggregation across many users. In particular, the overhead of the state-of-the-art protocols for secure model aggregation grows quadratically with the number of users. In this paper, we propose the first secure aggregation framework, named Turbo-Aggregate, that in a network with NN users achieves a secure aggregation overhead of O(Nlog⁡N)O(N\log{N}), as opposed to O(N2)O(N^2), while tolerating up to a user dropout rate of 50%50\%. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate that Turbo-Aggregate achieves a total running time that grows almost linear in the number of users, and provides up to 40×40\times speedup over the state-of-the-art protocols with up to N=200N=200 users. Our experiments also demonstrate the impact of model size and bandwidth on the performance of Turbo-Aggregate

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006
    • 

    corecore