890,670 research outputs found
Functional Methods in Stochastic Systems
Field-theoretic construction of functional representations of solutions of
stochastic differential equations and master equations is reviewed. A generic
expression for the generating function of Green functions of stochastic systems
is put forward. Relation of ambiguities in stochastic differential equations
and in the functional representations is discussed. Ordinary differential
equations for expectation values and correlation functions are inferred with
the aid of a variational approach.Comment: Plenary talk presented at Mathematical Modeling and Computational
Science. International Conference, MMCP 2011, Star\'a Lesn\'a, Slovakia, July
4-8, 201
Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization
In this paper, we present a new stochastic algorithm, namely the stochastic
block mirror descent (SBMD) method for solving large-scale nonsmooth and
stochastic optimization problems. The basic idea of this algorithm is to
incorporate the block-coordinate decomposition and an incremental block
averaging scheme into the classic (stochastic) mirror-descent method, in order
to significantly reduce the cost per iteration of the latter algorithm. We
establish the rate of convergence of the SBMD method along with its associated
large-deviation results for solving general nonsmooth and stochastic
optimization problems. We also introduce different variants of this method and
establish their rate of convergence for solving strongly convex, smooth, and
composite optimization problems, as well as certain nonconvex optimization
problems. To the best of our knowledge, all these developments related to the
SBMD methods are new in the stochastic optimization literature. Moreover, some
of our results also seem to be new for block coordinate descent methods for
deterministic optimization
Bold Diagrammatic Monte Carlo in the Lens of Stochastic Iterative Methods
This work aims at understanding of bold diagrammatic Monte Carlo (BDMC)
methods for stochastic summation of Feynman diagrams from the angle of
stochastic iterative methods. The convergence enhancement trick of the BDMC is
investigated from the analysis of condition number and convergence of the
stochastic iterative methods. Numerical experiments are carried out for model
systems to compare the BDMC with related stochastic iterative approaches
Numerical Methods for Stochastic Differential Equations
Stochastic differential equations (sdes) play an important role in physics
but existing numerical methods for solving such equations are of low accuracy
and poor stability. A general strategy for developing accurate and efficient
schemes for solving stochastic equations in outlined here. High order numerical
methods are developed for integration of stochastic differential equations with
strong solutions. We demonstrate the accuracy of the resulting integration
schemes by computing the errors in approximate solutions for sdes which have
known exact solutions
Introduction to stochastic error correction methods
We propose a method for eliminating the truncation error associated with any
subspace diagonalization calculation. The new method, called stochastic error
correction, uses Monte Carlo sampling to compute the contribution of the
remaining basis vectors not included in the initial diagonalization. The method
is part of a new approach to computational quantum physics which combines both
diagonalization and Monte Carlo techniques.Comment: 11 pages, 1 figur
Hybrid Deterministic-Stochastic Methods for Data Fitting
Many structured data-fitting applications require the solution of an
optimization problem involving a sum over a potentially large number of
measurements. Incremental gradient algorithms offer inexpensive iterations by
sampling a subset of the terms in the sum. These methods can make great
progress initially, but often slow as they approach a solution. In contrast,
full-gradient methods achieve steady convergence at the expense of evaluating
the full objective and gradient on each iteration. We explore hybrid methods
that exhibit the benefits of both approaches. Rate-of-convergence analysis
shows that by controlling the sample size in an incremental gradient algorithm,
it is possible to maintain the steady convergence rates of full-gradient
methods. We detail a practical quasi-Newton implementation based on this
approach. Numerical experiments illustrate its potential benefits.Comment: 26 pages. Revised proofs of Theorems 2.6 and 3.1, results unchange
- …
