9,803 research outputs found

    Accounting for Uncertainty Affecting Technical Change in an Economic-Climate Model

    Get PDF
    The key role of technological change in the decline of energy and carbon intensities of aggregate economic activities is widely recognized. This has focused attention on the issue of developing endogenous models for the evolution of technological change. With a few exceptions this is done using a deterministic framework, even though technological change is a dynamic process which is uncertain by nature. Indeed, the two main vectors through which technological change may be conceptualized, learning through R&D investments and learning-by-doing, both evolve and cumulate in a stochastic manner. How misleading are climate strategies designed without accounting for such uncertainty? The main idea underlying the present piece of research is to assess and discuss the effect of endogenizing this uncertainty on optimal R&D investment trajectories and carbon emission abatement strategies. In order to do so, we use an implicit stochastic programming version of the FEEM-RICE model, first described in Bosetti, Carraro and Galeotti, (2005). The comparative advantage of taking a stochastic programming approach is estimated using as benchmarks the expected-value approach and the worst-case scenario approach. It appears that, accounting for uncertainty and irreversibility would affect both the optimal level of investment in R&D –which should be higher– and emission reductions –which should be contained in the early periods. Indeed, waiting and investing in R&D appears to be the most cost-effective hedging strategy.Stochastic Programming, Uncertainty and Learning, Endogenous Technical Change

    A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity

    Full text link
    Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.Comment: In Proceedings GraMSec 2014, arXiv:1404.163

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration
    • …
    corecore