4 research outputs found

    60 GHz Blockage Study Using Phased Arrays

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential for enormous capacity wireless links. However, designing robust communication systems at these frequencies requires that we understand the channel dynamics over both time and space: mmWave signals are extremely vulnerable to blocking and the channel can thus rapidly appear and disappear with small movement of obstacles and reflectors. In rich scattering environments, different paths may experience different blocking trajectories and understanding these multi-path blocking dynamics is essential for developing and assessing beamforming and beam-tracking algorithms. This paper presents the design and experimental results of a novel measurement system which uses phased arrays to perform mmWave dynamic channel measurements. Specifically, human blockage and its effects across multiple paths are investigated with only several microseconds between successive measurements. From these measurements we develop a modeling technique which uses low-rank tensor factorization to separate the available paths so that their joint statistics can be understood.Comment: To appear in the Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 201

    Channel Dynamics and SNR Tracking in Millimeter Wave Cellular Systems

    Full text link
    The millimeter wave (mmWave) frequencies are likely to play a significant role in fifth-generation (5G) cellular systems. A key challenge in developing systems in these bands is the potential for rapid channel dynamics: since mmWave signals are blocked by many materials, small changes in the position or orientation of the handset relative to objects in the environment can cause large swings in the channel quality. This paper addresses the issue of tracking the signal to noise ratio (SNR), which is an essential procedure for rate prediction, handover and radio link failure detection. A simple method for estimating the SNR from periodic synchronization signals is considered. The method is then evaluated using real experiments in common blockage scenarios combined with outdoor statistical models

    Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks

    Full text link
    The millimeter wave (mmWave) bands offer the possibility of orders of magnitude greater throughput for fifth generation (5G) cellular systems. However, since mmWave signals are highly susceptible to blockage, channel quality on any one mmWave link can be extremely intermittent. This paper implements a novel dual connectivity protocol that enables mobile user equipment (UE) devices to maintain physical layer connections to 4G and 5G cells simultaneously. A novel uplink control signaling system combined with a local coordinator enables rapid path switching in the event of failures on any one link. This paper provides the first comprehensive end-to-end evaluation of handover mechanisms in mmWave cellular systems. The simulation framework includes detailed measurement-based channel models to realistically capture spatial dynamics of blocking events, as well as the full details of MAC, RLC and transport protocols. Compared to conventional handover mechanisms, the study reveals significant benefits of the proposed method under several metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue on Millimeter Wave Communications for Future Mobile Network
    corecore