346 research outputs found

    Robust Depth Estimation from Auto Bracketed Images

    Full text link
    As demand for advanced photographic applications on hand-held devices grows, these electronics require the capture of high quality depth. However, under low-light conditions, most devices still suffer from low imaging quality and inaccurate depth acquisition. To address the problem, we present a robust depth estimation method from a short burst shot with varied intensity (i.e., Auto Bracketing) or strong noise (i.e., High ISO). We introduce a geometric transformation between flow and depth tailored for burst images, enabling our learning-based multi-view stereo matching to be performed effectively. We then describe our depth estimation pipeline that incorporates the geometric transformation into our residual-flow network. It allows our framework to produce an accurate depth map even with a bracketed image sequence. We demonstrate that our method outperforms state-of-the-art methods for various datasets captured by a smartphone and a DSLR camera. Moreover, we show that the estimated depth is applicable for image quality enhancement and photographic editing.Comment: To appear in CVPR 2018. Total 9 page

    Computational ghost imaging using deep learning

    Full text link
    Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three- dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images

    Classification-based Financial Markets Prediction using Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the application of DNNs to predicting financial market movement directions. In particular we describe the configuration and training approach and then demonstrate their application to backtesting a simple trading strategy over 43 different Commodity and FX future mid-prices at 5-minute intervals. All results in this paper are generated using a C++ implementation on the Intel Xeon Phi co-processor which is 11.4x faster than the serial version and a Python strategy backtesting environment both of which are available as open source code written by the authors

    CodeX: Bit-Flexible Encoding for Streaming-based FPGA Acceleration of DNNs

    Full text link
    This paper proposes CodeX, an end-to-end framework that facilitates encoding, bitwidth customization, fine-tuning, and implementation of neural networks on FPGA platforms. CodeX incorporates nonlinear encoding to the computation flow of neural networks to save memory. The encoded features demand significantly lower storage compared to the raw full-precision activation values; therefore, the execution flow of CodeX hardware engine is completely performed within the FPGA using on-chip streaming buffers with no access to the off-chip DRAM. We further propose a fully-automated algorithm inspired by reinforcement learning which determines the customized encoding bitwidth across network layers. CodeX full-stack framework comprises of a compiler which takes a high-level Python description of an arbitrary neural network architecture. The compiler then instantiates the corresponding elements from CodeX Hardware library for FPGA implementation. Proof-of-concept evaluations on MNIST, SVHN, and CIFAR-10 datasets demonstrate an average of 4.65x throughput improvement compared to stand-alone weight encoding. We further compare CodeX with six existing full-precision DNN accelerators on ImageNet, showing an average of 3.6x and 2.54x improvement in throughput and performance-per-watt, respectively

    Fast Initial Access with Deep Learning for Beam Prediction in 5G mmWave Networks

    Full text link
    This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need for an exhaustive beam search thereby reducing the beam sweep time in IA. A deep neural network (DNN) is trained to learn the complex mapping from the received signal strengths (RSSs) collected with a reduced number of beams to the optimal spatial beam of the receiver (among a larger set of beams). In test time, DeepIA measures RSSs only from a small number of beams and runs the DNN to predict the best beam for IA. We show that DeepIA reduces the IA time by sweeping fewer beams and significantly outperforms the conventional IA's beam prediction accuracy in both line of sight (LoS) and non-line of sight (NLoS) mmWave channel conditions

    Restructuring Batch Normalization to Accelerate CNN Training

    Full text link
    Batch Normalization (BN) has become a core design block of modern Convolutional Neural Networks (CNNs). A typical modern CNN has a large number of BN layers in its lean and deep architecture. BN requires mean and variance calculations over each mini-batch during training. Therefore, the existing memory access reduction techniques, such as fusing multiple CONV layers, are not effective for accelerating BN due to their inability to optimize mini-batch related calculations during training. To address this increasingly important problem, we propose to restructure BN layers by first splitting a BN layer into two sub-layers (fission) and then combining the first sub-layer with its preceding CONV layer and the second sub-layer with the following activation and CONV layers (fusion). The proposed solution can significantly reduce main-memory accesses while training the latest CNN models, and the experiments on a chip multiprocessor show that the proposed BN restructuring can improve the performance of DenseNet-121 by 25.7%.Comment: 13 pages, 8 figures, to appear in SysML 2019, added ResNet-50 result

    Runtime Configurable Deep Neural Networks for Energy-Accuracy Trade-off

    Full text link
    We present a novel dynamic configuration technique for deep neural networks that permits step-wise energy-accuracy trade-offs during runtime. Our configuration technique adjusts the number of channels in the network dynamically depending on response time, power, and accuracy targets. To enable this dynamic configuration technique, we co-design a new training algorithm, where the network is incrementally trained such that the weights in channels trained in earlier steps are fixed. Our technique provides the flexibility of multiple networks while storing and utilizing one set of weights. We evaluate our techniques using both an ASIC-based hardware accelerator as well as a low-power embedded GPGPU and show that our approach leads to only a small or negligible loss in the final network accuracy. We analyze the performance of our proposed methodology using three well-known networks for MNIST, CIFAR-10, and SVHN datasets, and we show that we are able to achieve up to 95% energy reduction with less than 1% accuracy loss across the three benchmarks. In addition, compared to prior work on dynamic network reconfiguration, we show that our approach leads to approximately 50% savings in storage requirements, while achieving similar accuracy

    Deep Learning Assisted Heuristic Tree Search for the Container Pre-marshalling Problem

    Full text link
    The container pre-marshalling problem (CPMP) is concerned with the re-ordering of containers in container terminals during off-peak times so that containers can be quickly retrieved when the port is busy. The problem has received significant attention in the literature and is addressed by a large number of exact and heuristic methods. Existing methods for the CPMP heavily rely on problem-specific components (e.g., proven lower bounds) that need to be developed by domain experts with knowledge of optimization techniques and a deep understanding of the problem at hand. With the goal to automate the costly and time-intensive design of heuristics for the CPMP, we propose a new method called Deep Learning Heuristic Tree Search (DLTS). It uses deep neural networks to learn solution strategies and lower bounds customized to the CPMP solely through analyzing existing (near-) optimal solutions to CPMP instances. The networks are then integrated into a tree search procedure to decide which branch to choose next and to prune the search tree. DLTS produces the highest quality heuristic solutions to the CPMP to date with gaps to optimality below 2% on real-world sized instances

    BagNet: Berkeley Analog Generator with Layout Optimizer Boosted with Deep Neural Networks

    Full text link
    The discrepancy between post-layout and schematic simulation results continues to widen in analog design due in part to the domination of layout parasitics. This paradigm shift is forcing designers to adopt design methodologies that seamlessly integrate layout effects into the standard design flow. Hence, any simulation-based optimization framework should take into account time-consuming post-layout simulation results. This work presents a learning framework that learns to reduce the number of simulations of evolutionary-based combinatorial optimizers, using a DNN that discriminates against generated samples, before running simulations. Using this approach, the discriminator achieves at least two orders of magnitude improvement on sample efficiency for several large circuit examples including an optical link receiver layout.Comment: Accepted on ICCAD 2019 Conferenc

    A holistic approach to computing first-arrival traveltimes using neural networks

    Full text link
    Since the original algorithm by John Vidale in 1988 to numerically solve the isotropic eikonal equation, there has been tremendous progress on the topic addressing an array of challenges including improvement of the solution accuracy, incorporation of surface topography, adding more accurate physics by accounting for anisotropy/attenuation in the medium, and speeding up computations using multiple CPUs and GPUs. Despite these advances, there is no mechanism in these algorithms to carry on information gained by solving one problem to the next. Moreover, these approaches may breakdown for certain complex forms of the eikonal equation, requiring approximation methods to estimate the solution. Therefore, we seek an alternate approach to address the challenge in a holistic manner, i.e., a method that not only makes it simpler to incorporate topography, allow accounting for any level of complexity in physics, benefiting from computational speedup due to the availability of multiple CPUs or GPUs, but also able to transfer knowledge gained from solving one problem to the next. We develop an algorithm based on the emerging paradigm of physics-informed neural network to solve various forms of the eikonal equation. We show how transfer learning and surrogate modeling can be used to speed up computations by utilizing information gained from prior solutions. We also propose a two-stage optimization scheme to expedite the training process in presence of sharper heterogeneity in the velocity model. Furthermore, we demonstrate how the proposed approach makes it simpler to incorporate additional physics and other features in contrast to conventional methods that took years and often decades to make these advances. Such an approach not only makes the implementation of eikonal solvers much simpler but also puts us on a much faster path to progress
    • …
    corecore