42 research outputs found

    Exponential Stability of Primal-Dual Gradient Dynamics with Non-Strong Convexity

    Full text link
    This paper studies the exponential stability of primal-dual gradient dynamics (PDGD) for solving convex optimization problems where constraints are in the form of Ax+By= d and the objective is min f(x)+g(y) with strongly convex smooth f but only convex smooth g. We show that when g is a quadratic function or when g and matrix B together satisfy an inequality condition, the PDGD can achieve global exponential stability given that matrix A is of full row rank. These results indicate that the PDGD is locally exponentially stable with respect to any convex smooth g under a regularity condition. To prove the exponential stability, two quadratic Lyapunov functions are designed. Lastly, numerical experiments further complement the theoretical analysis.Comment: 8 page

    Scalable Bilinear π\pi Learning Using State and Action Features

    Full text link
    Approximate linear programming (ALP) represents one of the major algorithmic families to solve large-scale Markov decision processes (MDP). In this work, we study a primal-dual formulation of the ALP, and develop a scalable, model-free algorithm called bilinear π\pi learning for reinforcement learning when a sampling oracle is provided. This algorithm enjoys a number of advantages. First, it adopts (bi)linear models to represent the high-dimensional value function and state-action distributions, using given state and action features. Its run-time complexity depends on the number of features, not the size of the underlying MDPs. Second, it operates in a fully online fashion without having to store any sample, thus having minimal memory footprint. Third, we prove that it is sample-efficient, solving for the optimal policy to high precision with a sample complexity linear in the dimension of the parameter space

    Linear Stochastic Approximation: Constant Step-Size and Iterate Averaging

    Full text link
    We consider dd-dimensional linear stochastic approximation algorithms (LSAs) with a constant step-size and the so called Polyak-Ruppert (PR) averaging of iterates. LSAs are widely applied in machine learning and reinforcement learning (RL), where the aim is to compute an appropriate θ∗∈Rd\theta_{*} \in \mathbb{R}^d (that is an optimum or a fixed point) using noisy data and O(d)O(d) updates per iteration. In this paper, we are motivated by the problem (in RL) of policy evaluation from experience replay using the \emph{temporal difference} (TD) class of learning algorithms that are also LSAs. For LSAs with a constant step-size, and PR averaging, we provide bounds for the mean squared error (MSE) after tt iterations. We assume that data is \iid with finite variance (underlying distribution being PP) and that the expected dynamics is Hurwitz. For a given LSA with PR averaging, and data distribution PP satisfying the said assumptions, we show that there exists a range of constant step-sizes such that its MSE decays as O(1t)O(\frac{1}{t}). We examine the conditions under which a constant step-size can be chosen uniformly for a class of data distributions P\mathcal{P}, and show that not all data distributions `admit' such a uniform constant step-size. We also suggest a heuristic step-size tuning algorithm to choose a constant step-size of a given LSA for a given data distribution PP. We compare our results with related work and also discuss the implication of our results in the context of TD algorithms that are LSAs.Comment: 16 pages, 2 figures, was submitted to NIPS 201

    Stabilizing Adversarial Nets With Prediction Methods

    Full text link
    Adversarial neural networks solve many important problems in data science, but are notoriously difficult to train. These difficulties come from the fact that optimal weights for adversarial nets correspond to saddle points, and not minimizers, of the loss function. The alternating stochastic gradient methods typically used for such problems do not reliably converge to saddle points, and when convergence does happen it is often highly sensitive to learning rates. We propose a simple modification of stochastic gradient descent that stabilizes adversarial networks. We show, both in theory and practice, that the proposed method reliably converges to saddle points, and is stable with a wider range of training parameters than a non-prediction method. This makes adversarial networks less likely to "collapse," and enables faster training with larger learning rates.Comment: Accepted at ICLR 201

    Convergent Tree Backup and Retrace with Function Approximation

    Full text link
    Off-policy learning is key to scaling up reinforcement learning as it allows to learn about a target policy from the experience generated by a different behavior policy. Unfortunately, it has been challenging to combine off-policy learning with function approximation and multi-step bootstrapping in a way that leads to both stable and efficient algorithms. In this work, we show that the \textsc{Tree Backup} and \textsc{Retrace} algorithms are unstable with linear function approximation, both in theory and in practice with specific examples. Based on our analysis, we then derive stable and efficient gradient-based algorithms using a quadratic convex-concave saddle-point formulation. By exploiting the problem structure proper to these algorithms, we are able to provide convergence guarantees and finite-sample bounds. The applicability of our new analysis also goes beyond \textsc{Tree Backup} and \textsc{Retrace} and allows us to provide new convergence rates for the GTD and GTD2 algorithms without having recourse to projections or Polyak averaging

    A Block Coordinate Ascent Algorithm for Mean-Variance Optimization

    Full text link
    Risk management in dynamic decision problems is a primary concern in many fields, including financial investment, autonomous driving, and healthcare. The mean-variance function is one of the most widely used objective functions in risk management due to its simplicity and interpretability. Existing algorithms for mean-variance optimization are based on multi-time-scale stochastic approximation, whose learning rate schedules are often hard to tune, and have only asymptotic convergence proof. In this paper, we develop a model-free policy search framework for mean-variance optimization with finite-sample error bound analysis (to local optima). Our starting point is a reformulation of the original mean-variance function with its Fenchel dual, from which we propose a stochastic block coordinate ascent policy search algorithm. Both the asymptotic convergence guarantee of the last iteration's solution and the convergence rate of the randomly picked solution are provided, and their applicability is demonstrated on several benchmark domains.Comment: Accepted by NIPS 201

    High-confidence error estimates for learned value functions

    Full text link
    Estimating the value function for a fixed policy is a fundamental problem in reinforcement learning. Policy evaluation algorithms---to estimate value functions---continue to be developed, to improve convergence rates, improve stability and handle variability, particularly for off-policy learning. To understand the properties of these algorithms, the experimenter needs high-confidence estimates of the accuracy of the learned value functions. For environments with small, finite state-spaces, like chains, the true value function can be easily computed, to compute accuracy. For large, or continuous state-spaces, however, this is no longer feasible. In this paper, we address the largely open problem of how to obtain these high-confidence estimates, for general state-spaces. We provide a high-confidence bound on an empirical estimate of the value error to the true value error. We use this bound to design an offline sampling algorithm, which stores the required quantities to repeatedly compute value error estimates for any learned value function. We provide experiments investigating the number of samples required by this offline algorithm in simple benchmark reinforcement learning domains, and highlight that there are still many open questions to be solved for this important problem.Comment: Presented at (UAI) Uncertainty in Artificial Intelligence 201

    Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization

    Full text link
    Despite the success of single-agent reinforcement learning, multi-agent reinforcement learning (MARL) remains challenging due to complex interactions between agents. Motivated by decentralized applications such as sensor networks, swarm robotics, and power grids, we study policy evaluation in MARL, where agents with jointly observed state-action pairs and private local rewards collaborate to learn the value of a given policy. In this paper, we propose a double averaging scheme, where each agent iteratively performs averaging over both space and time to incorporate neighboring gradient information and local reward information, respectively. We prove that the proposed algorithm converges to the optimal solution at a global geometric rate. In particular, such an algorithm is built upon a primal-dual reformulation of the mean squared projected Bellman error minimization problem, which gives rise to a decentralized convex-concave saddle-point problem. To the best of our knowledge, the proposed double averaging primal-dual optimization algorithm is the first to achieve fast finite-time convergence on decentralized convex-concave saddle-point problems.Comment: final version as appeared in NeurIPS 201

    SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation

    Full text link
    When function approximation is used, solving the Bellman optimality equation with stability guarantees has remained a major open problem in reinforcement learning for decades. The fundamental difficulty is that the Bellman operator may become an expansion in general, resulting in oscillating and even divergent behavior of popular algorithms like Q-learning. In this paper, we revisit the Bellman equation, and reformulate it into a novel primal-dual optimization problem using Nesterov's smoothing technique and the Legendre-Fenchel transformation. We then develop a new algorithm, called Smoothed Bellman Error Embedding, to solve this optimization problem where any differentiable function class may be used. We provide what we believe to be the first convergence guarantee for general nonlinear function approximation, and analyze the algorithm's sample complexity. Empirically, our algorithm compares favorably to state-of-the-art baselines in several benchmark control problems.Comment: 28 pages, 13 figures. To appear at the 35th International Conference on Machine Learning (ICML 2018

    Variance Reduction for Deep Q-Learning using Stochastic Recursive Gradient

    Full text link
    Deep Q-learning algorithms often suffer from poor gradient estimations with an excessive variance, resulting in unstable training and poor sampling efficiency. Stochastic variance-reduced gradient methods such as SVRG have been applied to reduce the estimation variance (Zhao et al. 2019). However, due to the online instance generation nature of reinforcement learning, directly applying SVRG to deep Q-learning is facing the problem of the inaccurate estimation of the anchor points, which dramatically limits the potentials of SVRG. To address this issue and inspired by the recursive gradient variance reduction algorithm SARAH (Nguyen et al. 2017), this paper proposes to introduce the recursive framework for updating the stochastic gradient estimates in deep Q-learning, achieving a novel algorithm called SRG-DQN. Unlike the SVRG-based algorithms, SRG-DQN designs a recursive update of the stochastic gradient estimate. The parameter update is along an accumulated direction using the past stochastic gradient information, and therefore can get rid of the estimation of the full gradients as the anchors. Additionally, SRG-DQN involves the Adam process for further accelerating the training process. Theoretical analysis and the experimental results on well-known reinforcement learning tasks demonstrate the efficiency and effectiveness of the proposed SRG-DQN algorithm.Comment: 8 pages, 3 figure
    corecore