6,631 research outputs found

    Subsampling Algorithms for Semidefinite Programming

    Full text link
    We derive a stochastic gradient algorithm for semidefinite optimization using randomization techniques. The algorithm uses subsampling to reduce the computational cost of each iteration and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per iteration and total number of iterations. Furthermore, the total computational cost is directly proportional to the complexity (i.e. rank) of the solution. We study numerical performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System

    Approximate Dynamic Programming via Sum of Squares Programming

    Full text link
    We describe an approximate dynamic programming method for stochastic control problems on infinite state and input spaces. The optimal value function is approximated by a linear combination of basis functions with coefficients as decision variables. By relaxing the Bellman equation to an inequality, one obtains a linear program in the basis coefficients with an infinite set of constraints. We show that a recently introduced method, which obtains convex quadratic value function approximations, can be extended to higher order polynomial approximations via sum of squares programming techniques. An approximate value function can then be computed offline by solving a semidefinite program, without having to sample the infinite constraint. The policy is evaluated online by solving a polynomial optimization problem, which also turns out to be convex in some cases. We experimentally validate the method on an autonomous helicopter testbed using a 10-dimensional helicopter model.Comment: 7 pages, 5 figures. Submitted to the 2013 European Control Conference, Zurich, Switzerlan

    Semidefinite Relaxations for Stochastic Optimal Control Policies

    Full text link
    Recent results in the study of the Hamilton Jacobi Bellman (HJB) equation have led to the discovery of a formulation of the value function as a linear Partial Differential Equation (PDE) for stochastic nonlinear systems with a mild constraint on their disturbances. This has yielded promising directions for research in the planning and control of nonlinear systems. This work proposes a new method obtaining approximate solutions to these linear stochastic optimal control (SOC) problems. A candidate polynomial with variable coefficients is proposed as the solution to the SOC problem. A Sum of Squares (SOS) relaxation is then taken to the partial differential constraints, leading to a hierarchy of semidefinite relaxations with improving sub-optimality gap. The resulting approximate solutions are shown to be guaranteed over- and under-approximations for the optimal value function.Comment: Preprint. Accepted to American Controls Conference (ACC) 2014 in Portland, Oregon. 7 pages, colo

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    A Unified Analysis of Stochastic Optimization Methods Using Jump System Theory and Quadratic Constraints

    Full text link
    We develop a simple routine unifying the analysis of several important recently-developed stochastic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA). First, we show an intrinsic connection between stochastic optimization methods and dynamic jump systems, and propose a general jump system model for stochastic optimization methods. Our proposed model recovers SAGA, SDCA, Finito, and SAG as special cases. Then we combine jump system theory with several simple quadratic inequalities to derive sufficient conditions for convergence rate certifications of the proposed jump system model under various assumptions (with or without individual convexity, etc). The derived conditions are linear matrix inequalities (LMIs) whose sizes roughly scale with the size of the training set. We make use of the symmetry in the stochastic optimization methods and reduce these LMIs to some equivalent small LMIs whose sizes are at most 3 by 3. We solve these small LMIs to provide analytical proofs of new convergence rates for SAGA, Finito and SDCA (with or without individual convexity). We also explain why our proposed LMI fails in analyzing SAG. We reveal a key difference between SAG and other methods, and briefly discuss how to extend our LMI analysis for SAG. An advantage of our approach is that the proposed analysis can be automated for a large class of stochastic methods under various assumptions (with or without individual convexity, etc).Comment: To Appear in Proceedings of the Annual Conference on Learning Theory (COLT) 201

    Convex Chance Constrained Model Predictive Control

    Full text link
    We consider the Chance Constrained Model Predictive Control problem for polynomial systems subject to disturbances. In this problem, we aim at finding optimal control input for given disturbed dynamical system to minimize a given cost function subject to probabilistic constraints, over a finite horizon. The control laws provided have a predefined (low) risk of not reaching the desired target set. Building on the theory of measures and moments, a sequence of finite semidefinite programmings are provided, whose solution is shown to converge to the optimal solution of the original problem. Numerical examples are presented to illustrate the computational performance of the proposed approach.Comment: This work has been submitted to the 55th IEEE Conference on Decision and Contro
    corecore