7 research outputs found

    Stochastic Optimization of Areas UnderPrecision-Recall Curves with Provable Convergence

    Full text link
    Areas under ROC (AUROC) and precision-recall curves (AUPRC) are common metrics for evaluating classification performance for imbalanced problems. Compared with AUROC, AUPRC is a more appropriate metric for highly imbalanced datasets. While stochastic optimization of AUROC has been studied extensively, principled stochastic optimization of AUPRC has been rarely explored. In this work, we propose a principled technical method to optimize AUPRC for deep learning. Our approach is based on maximizing the averaged precision (AP), which is an unbiased point estimator of AUPRC. We cast the objective into a sum of {\it dependent compositional functions} with inner functions dependent on random variables of the outer level. We propose efficient adaptive and non-adaptive stochastic algorithms named SOAP with {\it provable convergence guarantee under mild conditions} by leveraging recent advances in stochastic compositional optimization. Extensive experimental results on image and graph datasets demonstrate that our proposed method outperforms prior methods on imbalanced problems in terms of AUPRC. To the best of our knowledge, our work represents the first attempt to optimize AUPRC with provable convergence. The SOAP has been implemented in the libAUC library at~\url{https://libauc.org/}.Comment: 24 pages, 10 figure

    Fine-Grained Analysis of Stability and Generalization for Stochastic Gradient Descent

    Full text link
    Recently there are a considerable amount of work devoted to the study of the algorithmic stability and generalization for stochastic gradient descent (SGD). However, the existing stability analysis requires to impose restrictive assumptions on the boundedness of gradients, strong smoothness and convexity of loss functions. In this paper, we provide a fine-grained analysis of stability and generalization for SGD by substantially relaxing these assumptions. Firstly, we establish stability and generalization for SGD by removing the existing bounded gradient assumptions. The key idea is the introduction of a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates. This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting using stability approach. Secondly, the smoothness assumption is relaxed by considering loss functions with Holder continuous (sub)gradients for which we show that optimal bounds are still achieved by balancing computation and stability. To our best knowledge, this gives the first-ever-known stability and generalization bounds for SGD with even non-differentiable loss functions. Finally, we study learning problems with (strongly) convex objectives but non-convex loss functions.Comment: to appear in ICML 202
    corecore