7,306 research outputs found

    Equality of bond percolation critical exponents for pairs of dual lattices

    Full text link
    For a certain class of two-dimensional lattices, lattice-dual pairs are shown to have the same bond percolation critical exponents. A computational proof is given for the martini lattice and its dual to illustrate the method. The result is generalized to a class of lattices that allows the equality of bond percolation critical exponents for lattice-dual pairs to be concluded without performing the computations. The proof uses the substitution method, which involves stochastic ordering of probability measures on partially ordered sets. As a consequence, there is an infinite collection of infinite sets of two-dimensional lattices, such that all lattices in a set have the same critical exponents.Comment: 10 pages, 7 figure

    On entropy, specific heat, susceptibility and Rushbrooke inequality in percolation

    Full text link
    We investigate percolation, a probabilistic model for continuous phase transition (CPT), on square and weighted planar stochastic lattices. In its thermal counterpart, entropy is minimally low where order parameter (OP) is maximally high and vice versa. Besides, specific heat, OP and susceptibility exhibit power-law when approaching the critical point and the corresponding critical exponents α,β,γ\alpha, \beta, \gamma respectably obey the Rushbrooke inequality (RI) α+2β+γ≥2\alpha+2\beta+\gamma\geq 2. Their analogues in percolation, however, remain elusive. We define entropy, specific heat and redefine susceptibility for percolation and show that they behave exactly in the same way as their thermal counterpart. We also show that RI holds for both the lattices albeit they belong to different universality classes.Comment: 5 pages, 3 captioned figures, to appear as a Rapid Communication in Physical Review E, 201

    Overfrustrated and Underfrustrated Spin-Glasses in d=3 and 2: Evolution of Phase Diagrams and Chaos Including Spin-Glass Order in d=2

    Full text link
    In spin-glass systems, frustration can be adjusted continuously and considerably, without changing the antiferromagnetic bond probability p, by using locally correlated quenched randomness, as we demonstrate here on hypercubic lattices and hierarchical lattices. Such overfrustrated and underfrustrated Ising systems on hierarchical lattices in d=3 and 2 are studied. With the removal of just 51 % of frustration, a spin-glass phase occurs in d=2. With the addition of just 33 % frustration, the spin-glass phase disappears in d=3. Sequences of 18 different phase diagrams for different levels of frustration are calculated in both dimensions. In general, frustration lowers the spin-glass ordering temperature. At low temperatures, increased frustration favors the spin-glass phase (before it disappears) over the ferromagnetic phase and symmetrically the antiferromagnetic phase. When any amount, including infinitesimal, frustration is introduced, the chaotic rescaling of local interactions occurs in the spin-glass phase. Chaos increases with increasing frustration, as seen from the increased positive value of the calculated Lyapunov exponent λ\lambda, starting from λ=0\lambda =0 when frustration is absent. The calculated runaway exponent yRy_R of the renormalization-group flows decreases with increasing frustration to yR=0y_R=0 when the spin-glass phase disappears. From our calculations of entropy and specific heat curves in d=3, it is seen that frustration lowers in temperature the onset of both long- and short-range order in spin-glass phases, but is more effective on the former. From calculations of the entropy as a function of antiferromagnetic bond concentration p, it is seen that the ground-state and low-temperature entropy already mostly sets in within the ferromagnetic and antiferromagnetic phases, before the spin-glass phase is reached.Comment: Published version, 18 phase diagrams, 12 figures, 10 page

    A domain-theoretic investigation of posets of sub-sigma-algebras (extended abstract)

    Full text link
    Given a measurable space (X, M) there is a (Galois) connection between sub-sigma-algebras of M and equivalence relations on X. On the other hand equivalence relations on X are closely related to congruences on stochastic relations. In recent work, Doberkat has examined lattice properties of posets of congruences on a stochastic relation and motivated a domain-theoretic investigation of these ordered sets. Here we show that the posets of sub-sigma-algebras of a measurable space do not enjoy desired domain-theoretic properties and that our counterexamples can be applied to the set of smooth equivalence relations on an analytic space, thus giving a rather unsatisfactory answer to Doberkat's question
    • …
    corecore