734 research outputs found

    Stochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization

    Full text link
    We propose a data-driven method to solve a stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The objective is to determine power schedules for controllable devices in a power network to balance operation cost and conditional value-at-risk (CVaR) of device and network constraint violations. These decisions include scheduled power output adjustments and reserve policies, which specify planned reactions to forecast errors in order to accommodate fluctuating renewable energy sources. Instead of assuming the uncertainties across the networks follow prescribed probability distributions, we assume the distributions are only observable through a finite training dataset. By utilizing the Wasserstein metric to quantify differences between the empirical data-based distribution and the real data-generating distribution, we formulate a distributionally robust optimization OPF problem to search for power schedules and reserve policies that are robust to sampling errors inherent in the dataset. A simple numerical example illustrates inherent tradeoffs between operation cost and risk of constraint violation, and we show how our proposed method offers a data-driven framework to balance these objectives

    Data Valuation from Data-Driven Optimization

    Full text link
    With the ongoing investment in data collection and communication technology in power systems, data-driven optimization has been established as a powerful tool for system operators to handle stochastic system states caused by weather- and behavior-dependent resources. However, most methods are ignorant to data quality, which may differ based on measurement and underlying privacy-protection mechanisms. This paper addresses this shortcoming by (i) proposing a practical data quality metric based on Wasserstein distance, (ii) leveraging a novel modification of distributionally robust optimization using information from multiple data sets with heterogeneous quality to valuate data, (iii) applying the proposed optimization framework to an optimal power flow problem, and (iv) showing a direct method to valuate data from the optimal solution. We conduct numerical experiments to analyze and illustrate the proposed model and publish the implementation open-source

    Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets

    Get PDF
    We present a data-driven approach for distributionally robust chance constrained optimization problems (DRCCPs). We consider the case where the decision maker has access to a finite number of samples or realizations of the uncertainty. The chance constraint is then required to hold for all distributions that are close to the empirical distribution constructed from the samples (where the distance between two distributions is defined via the Wasserstein metric). We first reformulate DRCCPs under data-driven Wasserstein ambiguity sets and a general class of constraint functions. When the feasibility set of the chance constraint program is replaced by its convex inner approximation, we present a convex reformulation of the program and show its tractability when the constraint function is affine in both the decision variable and the uncertainty. For constraint functions concave in the uncertainty, we show that a cutting-surface algorithm converges to an approximate solution of the convex inner approximation of DRCCPs. Finally, for constraint functions convex in the uncertainty, we compare the feasibility set with other sample-based approaches for chance constrained programs.Comment: A shorter version is submitted to the American Control Conference, 201
    • …
    corecore