2 research outputs found

    Stochastic Optimal Control for Buffer-Aided Cooperative Relaying Systems Using Nonorthogonal Multiple Access

    No full text
    In this paper, a multiple-cluster downlink multiple-input single-output (MISO) nonorthogonal multiple access (NOMA) system is considered. In each cluster, there are one central user and one cell-edge user. The central user has a data buffer with finite storage units, which will decode the cell-edge user’s message and store it at the data buffer. To enhance the performance of the cell-edge user, the central user operates as a relay and helps forward the message to the cell-edge user. Our objective is to maximize the long-term average sum rates for the cell-edge users by designing the beamforming vectors and online power control, under the constraints of the data buffer causality, required information rates for central users, and transmit power at the base station and central users. Based on the current buffer state and the channel state information, we propose a low-complexity online Lyapunov optimization algorithm combined with a constrained concave-convex procedure (CCCP) to solve the causal and nonconvex problem. Furthermore, we verify the asymptotic optimality of the proposed online Lyapunov optimization algorithm. Simulation results demonstrate that our proposed scheme performs better than the greedy algorithm and the orthogonal multiple access (OMA) scheme
    corecore