6,426 research outputs found

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties

    Get PDF
    Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control Barrier Functions (CBF) have emerged as a computationally efficient tool to guarantee safety in multi-agent environments, but they assume perfect knowledge of both the robot dynamics and other agents' dynamics. While knowledge of the robot's dynamics might be reasonably well known, the heterogeneity of agents in real-world environments means there will always be considerable uncertainty in our prediction of other agents' dynamics. This work aims to learn high-confidence bounds for these dynamic uncertainties using Matrix-Variate Gaussian Process models, and incorporates them into a robust multi-agent CBF framework. We transform the resulting min-max robust CBF into a quadratic program, which can be efficiently solved in real time. We verify via simulation results that the nominal multi-agent CBF is often violated during agent interactions, whereas our robust formulation maintains safety with a much higher probability and adapts to learned uncertainties

    Uncertainty Aware Learning from Demonstrations in Multiple Contexts using Bayesian Neural Networks

    Get PDF
    Diversity of environments is a key challenge that causes learned robotic controllers to fail due to the discrepancies between the training and evaluation conditions. Training from demonstrations in various conditions can mitigate---but not completely prevent---such failures. Learned controllers such as neural networks typically do not have a notion of uncertainty that allows to diagnose an offset between training and testing conditions, and potentially intervene. In this work, we propose to use Bayesian Neural Networks, which have such a notion of uncertainty. We show that uncertainty can be leveraged to consistently detect situations in high-dimensional simulated and real robotic domains in which the performance of the learned controller would be sub-par. Also, we show that such an uncertainty based solution allows making an informed decision about when to invoke a fallback strategy. One fallback strategy is to request more data. We empirically show that providing data only when requested results in increased data-efficiency.Comment: Copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work
    • …
    corecore