6 research outputs found

    Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates

    Full text link
    Distributed and federated learning algorithms and techniques associated primarily with minimization problems. However, with the increase of minimax optimization and variational inequality problems in machine learning, the necessity of designing efficient distributed/federated learning approaches for these problems is becoming more apparent. In this paper, we provide a unified convergence analysis of communication-efficient local training methods for distributed variational inequality problems (VIPs). Our approach is based on a general key assumption on the stochastic estimates that allows us to propose and analyze several novel local training algorithms under a single framework for solving a class of structured non-monotone VIPs. We present the first local gradient descent-accent algorithms with provable improved communication complexity for solving distributed variational inequalities on heterogeneous data. The general algorithmic framework recovers state-of-the-art algorithms and their sharp convergence guarantees when the setting is specialized to minimization or minimax optimization problems. Finally, we demonstrate the strong performance of the proposed algorithms compared to state-of-the-art methods when solving federated minimax optimization problems

    Solving Structured Hierarchical Games Using Differential Backward Induction

    Full text link
    Many real-world systems possess a hierarchical structure where a strategic plan is forwarded and implemented in a top-down manner. Examples include business activities in large companies or policy making for reducing the spread during pandemics. We introduce a novel class of games that we call structured hierarchical games (SHGs) to capture these strategic interactions. In an SHG, each player is represented as a vertex in a multi-layer decision tree and controls a real-valued action vector reacting to orders from its predecessors and influencing its descendants' behaviors strategically based on its own subjective utility. SHGs generalize extensive form games as well as Stackelberg games. For general SHGs with (possibly) nonconvex payoffs and high-dimensional action spaces, we propose a new solution concept which we call local subgame perfect equilibrium. By exploiting the hierarchical structure and strategic dependencies in payoffs, we derive a back propagation-style gradient-based algorithm which we call Differential Backward Induction to compute an equilibrium. We theoretically characterize the convergence properties of DBI and empirically demonstrate a large overlap between the stable points reached by DBI and equilibrium solutions. Finally, we demonstrate the effectiveness of our algorithm in finding \emph{globally} stable solutions and its scalability for a recently introduced class of SHGs for pandemic policy making

    LEAD: Least-Action Dynamics for Min-Max Optimization

    Full text link
    Adversarial formulations such as generative adversarial networks (GANs) have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the rotational dynamics that hinder their convergence. Existing methods typically employ intuitive, carefully hand-designed mechanisms for controlling such rotations. In this paper, we take a novel approach to address this issue by casting min-max optimization as a physical system. We leverage tools from physics to introduce LEAD (Least-Action Dynamics), a second-order optimizer for min-max games. Next, using Lyapunov stability theory and spectral analysis, we study LEAD's convergence properties in continuous and discrete-time settings for bilinear games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements over baseline methods
    corecore