5,316 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Dynamic state estimation and prediction for real-time control and operation

    Get PDF
    Real-time control and operation are crucial to deal with increasing complexity of modern power systems. To effectively enable those functions, it is required a Dynamic State Estimation (DSE) function to provide accurate network state variables at the right moment and predict their trends ahead. This paper addresses the important role of DSE over the conventional static State Estimation in such new context of smart grids. DSE approaches normally based on Extended Kalman Filter (EKF) need to collect recursively time-historic data, to update covariance vectors, and to treat heavy computation matrices. Computation burden mitigates the state-of-the-art utilizations of DSE in real large-scale networks although DSE was introduced several decades ago. In this paper, an improvement of DSE by using Unscented Kalman Filter (UKF) to alleviate computation burden will be discussed. The UKF-based approach avoids using linearization procedure thus outperforms the EKF-based approach to cope with non-linear models. Performance of the method is investigated with a simulation on a 18-bus test network. Preliminary results have been gained through a case study that motivate further research on this approach

    Dynamic state estimation for distribution networks with renewable energy integration

    Get PDF
    The massive integration of variable and unpredictable Renewable Energy Sources (RES) and new types of load consumptions increases the dynamic and uncertain nature of the electricity grid. Emerging interests have focused on improving the monitoring capabilities of network operators so that they can have accurate insight into a networkโ€™s status at the right moment and predict its future trends. Though state estimation is crucial for this purpose to trigger control functions, it has been used mainly for steady-state analysis. The need for dynamic state estimation (DSE), however, is increasing for real-time control and operation. This paper addresses the important role of DSE over conventional static-state estimation in this new distribution network context. Computational burden mitigates the state-of-the-art utilizations of DSE in real large-scale networks, although DSE was introduced several decades ago. This paper the unscented Kalman filter (UKF) to alleviate computational burden with DSE. The UKF-based approach does not use a linearization procedure and thus outperforms the conventional Extended Kalman Filter based approach to cope with non-linear models. The performance of the UKF method is investigated with a simulation of an 18-bus distribution network on the real-time digital simulator (RTDS) platform. A distribution network with considerable integration of renewable energy production is used to evaluate the UKF-based DSE approach under different types of events

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    • โ€ฆ
    corecore