6,384 research outputs found

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Decentralized Adaptive Helper Selection in Multi-channel P2P Streaming Systems

    Full text link
    In Peer-to-Peer (P2P) multichannel live streaming, helper peers with surplus bandwidth resources act as micro-servers to compensate the server deficiencies in balancing the resources between different channel overlays. With deployment of helper level between server and peers, optimizing the user/helper topology becomes a challenging task since applying well-known reciprocity-based choking algorithms is impossible due to the one-directional nature of video streaming from helpers to users. Because of selfish behavior of peers and lack of central authority among them, selection of helpers requires coordination. In this paper, we design a distributed online helper selection mechanism which is adaptable to supply and demand pattern of various video channels. Our solution for strategic peers' exploitation from the shared resources of helpers is to guarantee the convergence to correlated equilibria (CE) among the helper selection strategies. Online convergence to the set of CE is achieved through the regret-tracking algorithm which tracks the equilibrium in the presence of stochastic dynamics of helpers' bandwidth. The resulting CE can help us select proper cooperation policies. Simulation results demonstrate that our algorithm achieves good convergence, load distribution on helpers and sustainable streaming rates for peers
    corecore