50 research outputs found

    Stochastic Answer Networks for Machine Reading Comprehension

    Full text link
    We propose a simple yet robust stochastic answer network (SAN) that simulates multi-step reasoning in machine reading comprehension. Compared to previous work such as ReasoNet which used reinforcement learning to determine the number of steps, the unique feature is the use of a kind of stochastic prediction dropout on the answer module (final layer) of the neural network during the training. We show that this simple trick improves robustness and achieves results competitive to the state-of-the-art on the Stanford Question Answering Dataset (SQuAD), the Adversarial SQuAD, and the Microsoft MAchine Reading COmprehension Dataset (MS MARCO).Comment: 11 pages, 5 figures, Accepted to ACL 201

    Contextualized Word Representations for Reading Comprehension

    Full text link
    Reading a document and extracting an answer to a question about its content has attracted substantial attention recently. While most work has focused on the interaction between the question and the document, in this work we evaluate the importance of context when the question and document are processed independently. We take a standard neural architecture for this task, and show that by providing rich contextualized word representations from a large pre-trained language model as well as allowing the model to choose between context-dependent and context-independent word representations, we can obtain dramatic improvements and reach performance comparable to state-of-the-art on the competitive SQuAD dataset.Comment: 6 pages, 1 figure, NAACL 201

    Reinforced Mnemonic Reader for Machine Reading Comprehension

    Full text link
    In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.Comment: Published in 27th International Joint Conference on Artificial Intelligence (IJCAI), 201

    A Fully Attention-Based Information Retriever

    Full text link
    Recurrent neural networks are now the state-of-the-art in natural language processing because they can build rich contextual representations and process texts of arbitrary length. However, recent developments on attention mechanisms have equipped feedforward networks with similar capabilities, hence enabling faster computations due to the increase in the number of operations that can be parallelized. We explore this new type of architecture in the domain of question-answering and propose a novel approach that we call Fully Attention Based Information Retriever (FABIR). We show that FABIR achieves competitive results in the Stanford Question Answering Dataset (SQuAD) while having fewer parameters and being faster at both learning and inference than rival methods.Comment: Accepted for presentation at the International Joint Conference on Neural Networks (IJCNN) 201

    Language-Based Image Editing with Recurrent Attentive Models

    Full text link
    We investigate the problem of Language-Based Image Editing (LBIE). Given a source image and a natural language description, we want to generate a target image by editing the source image based on the description. We propose a generic modeling framework for two sub-tasks of LBIE: language-based image segmentation and image colorization. The framework uses recurrent attentive models to fuse image and language features. Instead of using a fixed step size, we introduce for each region of the image a termination gate to dynamically determine after each inference step whether to continue extrapolating additional information from the textual description. The effectiveness of the framework is validated on three datasets. First, we introduce a synthetic dataset, called CoSaL, to evaluate the end-to-end performance of our LBIE system. Second, we show that the framework leads to state-of-the-art performance on image segmentation on the ReferIt dataset. Third, we present the first language-based colorization result on the Oxford-102 Flowers dataset.Comment: Accepted to CVPR 2018 as a Spotligh
    corecore