3 research outputs found

    Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test

    Get PDF
    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2mA at each anode for 20 minutes) or active sham tDCS (2mA for 40 seconds), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2mA for 20 minutes). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement

    Stimulation strength and focality of electroconvulsive therapy and magnetic seizure therapy in a realistic head model

    No full text

    State-Dependent Cortical Network Dynamics

    Get PDF
    Neuropsychiatric illness represents a major health burden in the United States with a paucity of effective treatment. Many neuropsychiatric illnesses are network disorders, exhibiting aberrant organization of coordinated activity within and between brain areas. Cortical oscillations, arising from the synchronized activity of groups of neurons, are important in mediating both local and long-range communication in the brain and are particularly affected in neuropsychiatric diseases. A promising treatment approach for such network disorders entails ‘correcting’ abnormal oscillatory activity through non-invasive brain stimulation. However, we lack a clear understanding of the functional role of oscillatory activity in both health and disease. Thus, basic science and translational work is needed to elucidate the role of oscillatory activity and other network dynamics in neuronal processing and behavior. Organized activity in the brain occurs at many spatial and temporal scales, ranging from the millisecond duration of individual action potentials to the daily circadian rhythm. The studies comprising this dissertation focused on organization in cortex at the time scale of milliseconds, assessing local field potential and spiking activity, and contribute to understanding (1) the effects of non-invasive brain stimulation on behavioral responses, (2) network dynamics within and across cortical areas during different states, and (3) how oscillatory activity organizes spiking activity locally and long-range during sustained attention. Taken together, this work provides insight into the physiological organization of network dynamics and can provide the basis for future rational design of non-invasive brain stimulation treatments.Doctor of Philosoph
    corecore