6,098 research outputs found

    An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems

    Get PDF
    The authors would like to thank the support on this research by the CRISP project (Combinatorial Responses In Stress Pathways) funded by the BBSRC (BB/F00513X/1) under the Systems Approaches to Biological Research (SABR) Initiative.Peer reviewedPublisher PD

    Predicting Skin Permeability by means of Computational Approaches : Reliability and Caveats in Pharmaceutical Studies

    Get PDF
    © 2019 American Chemical Society.The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.Peer reviewedFinal Accepted Versio

    Einsatz von System Dynamics zur Modellierung der Szenarien-basierten Entwicklung des deutschen Biomethanmarktes

    Get PDF
    Biomethan aus lignin-reicher Biomasse (Holz, Stroh) wird durch thermochemische Vergasung hergestellt (Bio-SNG (biogenic synthetic natural gas)), während Biomethan aus lignin-armer (Energiepflanzen, tierische Exkremente, organischer Abfall,etc.) Biomasse durch anaerobe Vergärung hergestellt wird (Biomethan). Es kann zur Strom- und Wärmeversorgung beitragen, sowie als Kraftstoff im Verkehrssektor eingesetzt werden. In den genannten Sektoren kann Biomethan aufgrund der chemischen und physikalischen Äquivalenz zu fossilem Erdgas dieses substituieren und zum Klimaschutz beitragen. Die Anwendung von Erneuerbarem Methan als Option im Rahmen der Umgestaltung des auf fossilen Brennstoffen basierenden Energiesystems wird seit 2004 durch legislative Unterstützungsprogramme wie das Erneuerbare Energie Gesetz gefördert. Dies führte zur Entwicklung des weltweit größten Marktes für Biomethan. Bio-SNG ist bis heute nicht markt-relevant. Im Laufe des Überganges zu einem konsolidierten Markt für Erneuerbare-Energie-Produkte (bspw. Strom) wurden seit 2014 die Förderhöhen für diese reduziert. Als Folge stehen Produkte aus Erneuerbaren Energiequellen, wie bspw. Biomethan, in Deutschland vor einer ungewissen Zukunft, da die aktuellen Förderhöhen weder für einen weiteren Ausbau der Produktionskapazität ausreichen noch eine Erneuerung der Anlagen (nach Beendigung des Produktlebenszyklus) ermöglichen. Daher soll im Rahmen dieser Dissertation folgende Kernfrage beantwortet werden: • Unter welchen Randbedingungen kann sich Biomethan im Wettbewerb mit Erdgas auf dem deutschen Markt etablieren und welche Mengen an Biomethan werden dann produziert? Zur Beantwortung der Kernfrage wurde ein dynamisches Simulationsmodell anhand der Methode System Dynamics entwickelt. Auf Grundlage des Simulationsmodells wurden anschließend Szenarien definiert und simuliert. Als Untersuchungsraum wurde Deutschland im Zeitraum 2000 – 2035 gewählt. Die Simulationsergebnisse zeigen, dass eine Kombination aus Erhöhung des CO2-Preises des Europäischen Emissionshandelssystems und einer Förderung der Produktion von biogenem Flüssigerdgas potentiell in der Lage wäre, einen großen Anteil der aktuellen Biomethanproduktion unabhängig von staatlichen Fördersystemen aufrecht zu erhalten

    Assessment of chicken breast shelf life based on bench-top and portable near-infrared spectroscopy tools coupled with chemometrics

    Get PDF
    Abstract Objectives Near-infrared (NIR) spectroscopy is a rapid technique able to assess meat quality even if its capability to determine the shelf life of chicken fresh cuts is still debated, especially for portable devices. The aim of the study was to compare bench-top and portable NIR instruments in discriminating between four chicken breast refrigeration times (RT), coupled with multivariate classifier models. Materials and Methods Ninety-six samples were analysed by both NIR tools at 2, 6, 10 and 14 days post mortem. NIR data were subsequently submitted to partial least squares discriminant analysis (PLS-DA) and canonical discriminant analysis (CDA). The latter was preceded by double feature selection based on Boruta and Stepwise procedures. Results PLS-DA sorted moderate separation of RT theses, while shelf life assessment was more accurate on application of Stepwise-CDA. Bench-top tool had better performance than portable one, probably because it captured more informative spectral data as shown by the variable importance in projection (VIP) and restricted pool of Stepwise-CDA predictive scores (SPS). Conclusions NIR tools coupled with a multivariate model provide deep insight into the physicochemical processes occurring during storage. Spectroscopy showed reliable effectiveness to recognise a 7-day shelf life threshold of breasts, suitable for routine at-line application for screening of meat quality

    Development and software implementation of modelling tools for rapid fermentation process development using a parallel mini-bioreactor system

    Get PDF
    In order to establish a generic framework for the rapid development and optimisation of scalable fermentation processes, a novel methodology for simplifying model building was explored. This approach integrates small-scale fermentations with model-based experimental design (DoE) and predictive control strategies. In this study, four 1.4 litre vessels were characterised for power input, volumetric oxygen transfer coefficient (KLa) and mixing, to assess its potential for replicating cell culture rapidly. Engineering characterisation results showed excellent propeller operation over a range of 400-1200 rpm and up to the maximum motor output and under various air flow rates in fluid densities up to 4.21 Cp/mPa s (1.211 g/cm3 ). Limits were reached using glycerol (99%) at fluid viscosities of 500Cp/mPa s (1.253g/cm3 ) at 800 rpm and no air flow, hence experiencing the most resistance. This was the most taxing condition in terms of energy input into the system. Furthermore, we determined the efficient gas dispersion which is considered important for oxygen bubble dispersion in viscous fluids. The potential gas dispersion could be calculated as a function of both impeller speed, airflow rate, and the fluid viscosity. The calculations provided a working impeller speed of >263 rpm for >0.5 vvm air flow rate as preliminary parameters in our advanced modelling section. The key outcome of the KLa study was that the results showed suitable potential for mass transfer for high cell density fermentations, for each of the parallel stirred tank bioreactors. To assess the usability of the parallel bioreactors be used for bioprocess rapid development purposes Escherichia coli W3110 was characterised in the 1L WV vessels. So overall the experiments included testing the performance of the vessels engineering parameters and also the biological fermentations confirming that the system was suitable for parallel operation with high reproducibility. For model building, especially suited for the 4-reactor set up the parallel bioreactors a fractional factorial design was used, in which models could be rapidly built and implemented for further research. The screening and model optimisation helped to reduce the development time by using the parallel equipment. Batches of four reactors could be completed in parallel in which comparable experimental results were obtained rapidly for new fermentation models. Optical density measurements provided a quick off-line analysis of the growth curve of microbial populations, as compared to cell plate counts or dry weights that require more time. For the model development and the establishment of our integrated software modelling tool, a modified logistic model was developed to predict microbial growth kinetics. First-order kinetic models, logistic, and Gompertz models were used and comparatively analysed to assess the model fit to test batch data. The logistic model was favourable for mapping and simulating the later phases of bacterial growth, while the well-established exponential growth model predicted the early lag phase in our stoichiometric growth simulation software tool better. The initialisation of the previous fermentation model allowed us to build a statistical model, which was based on the engineering characteristics for optimisation of biomass. Therefore, batch nutrient supply with the aid of stoichiometric models could be tested and modelled. DoE model data was improved with metabolic flux analysis to develop an advanced feeding strategy by testing various metabolic pathways and the nutrients used in experimentation. Bacterial growth predictions and media optimisation were tested for maximising microbial biomass yields. We then modelled the dissolved oxygen concentration and substrate utilisation. The techniques and principles of dynamic flux balance analysis, mechanistic modelling, and stoichiometric mass balancing were used. The aim was to create and validate our integrated software based on advanced modelling for the parallel bioreactor systems and tested through application for E. coli fermentations. Optimising microbial biomass was the main target in this project, with the data collected from fermentation being the strongest comparator and validator. A new software for the integration of DoE and Dynamic flux balance analysis (DFBA) techniques with the intention of creating a working fermentation platform for the Multifors equipment via simulation and fermentation optimisation was the novel outcome of this research. The tool could provide functions for speeding up development time and control of parallel bioreactors

    An overview of existing modeling tools making use of model checking in the analysis of biochemical networks

    Get PDF
    Model checking is a well-established technique for automaticallyverifying complex systems. Recently, model checkers have appearedin computer tools for the analysis of biochemical (and generegulatory) networks. We survey several such tools to assess thepotential of model checking in computational biology. Next, our overviewfocuses on direct applications of existing model checkers, as well ason algorithms for biochemical network analysis influenced by modelchecking, such as those using binary decision diagrams or Booleansatisfiability solvers. We conclude with advantages and drawbacks ofmodel checking for the analysis of biochemical networks

    Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance

    Get PDF
    Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving mathematical modelling of the molecular pathways regulating cell growth and division

    Forecasting Oxygen Demand in Treatment Plant Using Artificial Neural Networks

    Full text link
    Modeling the wastewater treatment plant is difficult due to nonlinear properties of most of its different processes. Due to the increasing concerns over environmental effects of treatment plants considering the poor operation, fluctuations in process variables and problems of linear analyses, algorithms developed using artificial intelligence methods such as artificial neural networks have attracted a great deal of attention. In this research, first using regression analysis, the parameters of biological oxygen demand, chemical oxygen demand, and pH of the input wastewater were chosen as input parameter among other different parameters. Next, using error analysis, the best topology of neural networks was chosen for prediction. The results revealed that multilayer perception network with the sigmoid tangent training function, with one hidden layer in the input and output as well as 10 training nodes with regression coefficient of 0.92 is the best choice. The regression coefficients obtained from the predictions indicate that neural networked are well able to predict the performance of the wastewater treatment plant in Yazd
    corecore