4,402 research outputs found

    An Upper Limit on the Albedo of HD 209458b: Direct Imaging Photometry with the MOST Satellite

    Full text link
    We present space-based photometry of the transiting exoplanetary system HD 209458 obtained with the MOST (Microvariablity and Oscillations of STars) satellite, spanning 14 days and covering 4 transits and 4 secondary eclipses. The HD 209458 photometry was obtained in MOST's lower-precision Direct Imaging mode, which is used for targets in the brightness range 6.5<V<136.5 < V < 13. We describe the photometric reduction techniques for this mode of observing, in particular the corrections for stray Earthshine. We do not detect the secondary eclipse in the MOST data, to a limit in depth of 0.053 mmag (1 \sigma). We set a 1 \sigma upper limit on the planet-star flux ratio of 4.88 x 10^-5 corresponding to a geometric albedo upper limit in the MOST bandpass (400 to 700 nm) of 0.25. The corresponding numbers at the 3 \sigma level are 1.34 x 10^-4 and 0.68 respectively. HD 209458b is half as bright as Jupiter in the MOST bandpass. This low geometric albedo value is an important constraint for theoretical models of the HD209458b atmosphere, in particular ruling out the presence of reflective clouds. A second MOST campaign on HD 209458 is expected to be sensitive to an exoplanet albedo as low as 0.13 (1 sigma), if the star does not become more intrinsically variable in the meantime.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journal (July 2006, v645n1

    Gaia astrometry for stars with too few observations - a Bayesian approach

    Full text link
    Gaia's astrometric solution aims to determine at least five parameters for each star, together with appropriate estimates of their uncertainties and correlations. This requires at least five distinct observations per star. In the early data reductions the number of observations may be insufficient for a five-parameter solution, and even after the full mission many stars will remain under-observed, including faint stars at the detection limit and transient objects. In such cases it is reasonable to determine only the two position parameters. Their formal uncertainties would however grossly underestimate the actual errors, due to the neglected parallax and proper motion. We aim to develop a recipe to calculate sensible formal uncertainties that can be used in all cases of under-observed stars. Prior information about the typical ranges of stellar parallaxes and proper motions is incorporated in the astrometric solution by means of Bayes' rule. Numerical simulations based on the Gaia Universe Model Snapshot (GUMS) are used to investigate how the prior influences the actual errors and formal uncertainties when different amounts of Gaia observations are available. We develop a criterion for the optimum choice of priors, apply it to a wide range of cases, and derive a global approximation of the optimum prior as a function of magnitude and galactic coordinates. The feasibility of the Bayesian approach is demonstrated through global astrometric solutions of simulated Gaia observations. With an appropriate prior it is possible to derive sensible positions with realistic error estimates for any number of available observations. Even though this recipe works also for well-observed stars it should not be used where a good five-parameter astrometric solution can be obtained without a prior. Parallaxes and proper motions from a solution using priors are always biased and should not be used.Comment: Revised version, accepted 21st of August 2015 for publication in A&

    Calibration of BVRI Photometry for the Wide Field Channel of the HST Advanced Camera for Surveys

    Full text link
    We present new observations of two Galactic globular clusters, PAL4 and PAL14, using the Wide-Field Channel of the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST), and reanalyze archival data from a third, NGC2419. We matched our photometry of hundreds of stars in these fields from the ACS images to existing, ground-based photometry of faint sequences which were calibrated on the standard BVRI system of Landolt. These stars are significantly fainter than those generally used for HST calibration purposes, and therefore are much better matched to supporting precision photometry of ACS science targets. We were able to derive more accurate photometric transformation coefficients for the commonly used ACS broad-band filters compared to those published by Sirianni, et al. (2005), owing to the use of a factor of several more calibration stars which span a greater range of color. We find that the inferred transformations from each cluster individually do not vary significantly from the average, except for a small offset of the photometric zeropoint in the F850LP filter. Our results suggest that the published prescriptions for the time-dependent correction of CCD charge-transfer efficiency appear to work very well over the ~3.5 yr interval that spans our observations of PAL4 and PAL14 and the archived images of NGC2419.Comment: 22 pages, 12 figures. Accepted for publication in PAS

    Spectrophotometric calibration of low-resolution spectra

    Full text link
    Low-resolution spectroscopy is a frequently used technique. Aperture prism spectroscopy in particular is an important tool for large-scale survey observations. The ongoing ESA space mission Gaia is the currently most relevant example. In this work we analyse the fundamental limitations of the calibration of low-resolution spectrophotometric observations and introduce a calibration method that avoids simplifying assumptions on the smearing effects of the line spread functions. To this aim, we developed a functional analytic mathematical formulation of the problem of spectrophotometric calibration. In this formulation, the calibration process can be described as a linear mapping between two suitably constructed Hilbert spaces, independently of the resolution of the spectrophotometric instrument. The presented calibration method can provide a formally unusual but precise calibration of low-resolution spectrophotometry with non-negligible widths of line spread functions. We used the Gaia spectrophotometric instruments to demonstrate that the calibration method of this work can potentially provide a significantly better calibration than methods neglecting the smearing effects of the line spread functions.Comment: Final versio

    Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs

    Full text link
    Current optical space telescopes rely upon silicon Charge Coupled Devices (CCDs) to detect and image the incoming photons. The performance of a CCD detector depends on its ability to transfer electrons through the silicon efficiently, so that the signal from every pixel may be read out through a single amplifier. This process of electron transfer is highly susceptible to the effects of solar proton damage (or non-ionizing radiation damage). This is because charged particles passing through the CCD displace silicon atoms, introducing energy levels into the semi-conductor bandgap which act as localized electron traps. The reduction in Charge Transfer Efficiency (CTE) leads to signal loss and image smearing. The European Space Agency's astrometric Gaia mission will make extensive use of CCDs to create the most complete and accurate stereoscopic map to date of the Milky Way. In the context of the Gaia mission CTE is referred to with the complementary quantity Charge Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that threatens Gaia's performances. We present here a detailed Monte Carlo model which has been developed to simulate the operation of a damaged CCD at the pixel electrode level. This model implements a new approach to both the charge density distribution within a pixel and the charge capture and release probabilities, which allows the reproduction of CTI effects on a variety of measurements for a large signal level range in particular for signals of the order of a few electrons. A running version of the model as well as a brief documentation and a few examples are readily available at http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5 table

    Large-scale retrospective relative spectro-photometric self-calibration in space

    Get PDF
    We consider the application of relative self-calibration using overlap regions to spectroscopic galaxy surveys that use slit-less spectroscopy. This method is based on that developed for the SDSS by Padmanabhan at al. (2008) in that we consider jointly fitting and marginalising over calibrator brightness, rather than treating these as free parameters. However, we separate the calibration of the detector-to-detector from the full-focal-plane exposure-to-exposure calibration. To demonstrate how the calibration procedure will work, we simulate the procedure for a potential implementation of the spectroscopic component of the wide Euclid survey. We study the change of coverage and the determination of relative multiplicative errors in flux measurements for different dithering configurations. We use the new method to study the case where the flat-field across each exposure or detector is measured precisely and only exposure-to-exposure or detector-to-detector variation in the flux error remains. We consider several base dither patterns and find that they strongly influence the ability to calibrate, using this methodology. To enable self-calibration, it is important that the survey strategy connects different observations with at least a minimum amount of overlap, and we propose an "S"-pattern for dithering that fulfills this requirement. The final survey strategy adopted by Euclid will have to optimise for a number of different science goals and requirements. The large-scale calibration of the spectroscopic galaxy survey is clearly cosmologically crucial, but is not the only one.Comment: 23 pages, 19 figures, Accepted for publication in MNRAS, 201

    Object Classification in Astronomical Multi-Color Surveys

    Get PDF
    We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of >65000 color templates. The method aims for extracting the information content of object colors in a statistically correct way and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach. For the redshift estimation, we use an advanced version of the MEV estimator which determines the redshift error from the redshift dependent probability density function. The method was originally developed for the CADIS survey, where we checked its performance by spectroscopy. The method provides high reliability (6 errors among 151 objects with R<24), especially for quasar selection, and redshifts accurate within sigma ~ 0.03 for galaxies and sigma ~ 0.1 for quasars. We compare a few model surveys using the same telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. In practice, medium-band surveys show superior performance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, and is most critical for surveys with few, broad and deeply exposed filters, but less severe for many, narrow and less deep filters.Comment: 21 pages including 10 figures. Accepted for publication in Astronomy & Astrophysic

    Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

    Full text link
    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory (SNfactory). Combining GALEX UV data with optical and near infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star-formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high precision redshifts, gas-phase metallicities, and Halpha-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from SDSS for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The star-formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.Comment: 25 pages, 13 figures, accepted for publication in Ap

    The impact of spin temperature fluctuations on the 21-cm moments

    Full text link
    This paper considers the impact of Lyman-alpha coupling and X-ray heating on the 21-cm brightness-temperature one-point statistics (as predicted by semi-numerical simulations). The X-ray production efficiency is varied over four orders of magnitude and the hardness of the X-ray spectrum is varied from that predicted for high-mass X-ray binaries, to the softer spectrum expected from the hot inter-stellar medium. We find peaks in the redshift evolution of both the variance and skewness associated with the efficiency of X-ray production. The amplitude of the variance is also sensitive to the hardness of the X-ray SED. We find that the relative timing of the coupling and heating phases can be inferred from the redshift extent of a plateau that connects a peak in the variance's evolution associated with Lyman-alpha coupling to the heating peak. Importantly, we find that late X-ray heating would seriously hamper our ability to constrain reionization with the variance. Late X-ray heating also qualitatively alters the evolution of the skewness, providing a clean way to constrain such models. If foregrounds can be removed, we find that LOFAR, MWA and PAPER could constrain reionization and late X-ray heating models with the variance. We find that HERA and SKA (phase 1) will be able to constrain both reionization and heating by measuring the variance using foreground-avoidance techniques. If foregrounds can be removed they will also be able to constrain the nature of Lyman-alpha coupling.Comment: 16 pages, 13 figure, 1 table. Accepted for publication in MNRA

    The Lyot Project Direct Imaging Survey of Substellar Companions: Statistical Analysis and Information from Nondetections

    Get PDF
    The Lyot project used an optimized Lyot coronagraph with Extreme Adaptive Optics at the 3.63m Advanced Electro-Optical System telescope (AEOS) to observe 86 stars from 2004 to 2007. In this paper we give an overview of the survey results and a statistical analysis of the observed nondetections around 58 of our targets to place constraints on the population of substellar companions to nearby stars. The observations did not detect any companion in the substellar regime. Since null results can be as important as detections, we analyzed each observation to determine the characteristics of the companions that can be ruled out. For this purpose we use a Monte Carlo approach to produce artificial companions, and determine their detectability by comparison with the sensitivity curve for each star. All the non-detection results are combined using a Bayesian approach and we provide upper limits on the population of giant exoplanets and brown dwarfs for this sample of stars. Our nondetections confirm the rarity of brown dwarfs around solar-like stars and we constrain the frequency of massive substellar companions (M>40Mjup) at orbital separation between and 10 and 50 AU to be <20%.Comment: 32 pages, 11 figures, 2 tables. Published in the Astrophysical Journa
    corecore