5 research outputs found

    Efficient and Simple Algorithms for Fault Tolerant Spanners

    Full text link
    It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known polynomial time algorithm is significantly suboptimal. Designing a polynomial-time algorithm to construct (near-)optimal fault-tolerant spanners was given as an explicit open problem in the two most recent papers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka Williams SODA '18] and [Bodwin, Patel PODC '19]). We give a surprisingly simple algorithm which runs in polynomial time and constructs fault-tolerant spanners that are extremely close to optimal (off by only a linear factor in the stretch) by modifying the greedy algorithm to run in polynomial time. To complement this result, we also give simple distributed constructions in both the LOCAL and CONGEST models.Comment: 15 pages. Appeared at PODC 2020. This revision improves the running time slightly and incorporates reviewer comment

    Tight Bounds for Maximal Identifiability of Failure Nodes in Boolean Network Tomography

    Full text link
    We study maximal identifiability, a measure recently introduced in Boolean Network Tomography to characterize networks' capability to localize failure nodes in end-to-end path measurements. We prove tight upper and lower bounds on the maximal identifiability of failure nodes for specific classes of network topologies, such as trees and dd-dimensional grids, in both directed and undirected cases. We prove that directed dd-dimensional grids with support nn have maximal identifiability dd using 2d(n1)+22d(n-1)+2 monitors; and in the undirected case we show that 2d2d monitors suffice to get identifiability of d1d-1. We then study identifiability under embeddings: we establish relations between maximal identifiability, embeddability and graph dimension when network topologies are model as DAGs. Our results suggest the design of networks over NN nodes with maximal identifiability Ω(logN)\Omega(\log N) using O(logN)O(\log N) monitors and a heuristic to boost maximal identifiability on a given network by simulating dd-dimensional grids. We provide positive evidence of this heuristic through data extracted by exact computation of maximal identifiability on examples of small real networks
    corecore