2,011,787 research outputs found

    Steady state statistics of driven diffusions

    Get PDF
    We consider overdamped diffusion processes driven out of thermal equilibrium and we analyze their dynamical steady fluctuations. We discuss the thermodynamic interpretation of the joint fluctuations of occupation times and currents; they incorporate respectively the time-symmetric and the time-antisymmetric sector of the fluctuations. We highlight the canonical structure of the joint fluctuations. The novel concept of traffic complements the entropy production for the study of the occupation statistics. We explain how the occupation and current fluctuations get mutually coupled out of equilibrium. Their decoupling close-to-equilibrium explains the validity of entropy production principles.Comment: rewritten versio

    Intensity fluctuations in steady state superradiance

    Full text link
    Alkaline-earth like atoms with ultra-narrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications it is crucial to understand the noise properties of this device. In this paper we present a detailed analysis of the intensity fluctuations by means of Monte-Carlo simulations and semi-classical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.Comment: 8 pages, 5 figure

    Test of Information Theory on the Boltzmann Equation

    Get PDF
    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page

    Steady State Entanglement in Cavity QED

    Full text link
    We investigate steady state entanglement in an open quantum system, specifically a single atom in a driven optical cavity with cavity loss and spontaneous emission. The system reaches a steady pure state when driven very weakly. Under these conditions, there is an optimal value for atom-field coupling to maximize entanglement, as larger coupling favors a loss port due to the cavity enhanced spontaneous emission. We address ways to implement measurements of entanglement witnesses and find that normalized cross-correlation functions are indicators of the entanglement in the system. The magnitude of the equal time intensity-field cross correlation between the transmitted field of the cavity and the fluorescence intensity is proportional to the concurrence for weak driving fields.Comment: enhanced discussion, corrected formulas, title change, 1 added figur

    Steady state theory of current transfer

    Full text link
    Current transfer is defined as a charge transfer process where the transferred charge carries information about its original motion. We have recently suggested that such transfer causes the asymmetry observed in electron transfer induced by circularly polarized light through helical wires. This paper presents the steady state theory of current transfer within a tight binding model of coupled wires systems. The efficiency of current transfer is quantified in terms of the calculated asymmetry in the system response to a steady current imposed on one of the wires, with respect to the imposed current direction.Comment: 25 pages, 14 figure

    Steady state sedimentation of ultrasoft colloids

    Full text link
    The structural and dynamical properties of ultra-soft colloids - star polymers - exposed to a uniform external force field are analyzed applying the multiparticle collision dynamics approach, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak field limit, the structure of the star polymer is nearly unchanged, however in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star polymer body. In the weak field linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length

    Steady State Thermodynamics of Langevin Systems

    Full text link
    We study Langevin dynamics describing nonequilibirum steady states. Employing the phenomenological framework of steady state thermodynamics constructed by Oono and Paniconi [Prog. Theor. Phys. Suppl. {\bf130}, 29 (1998)], we find that the extended form of the second law which they proposed holds for transitions between steady states and that the Shannon entropy difference is related to the excess heat produced in an infinitely slow operation. A generalized version of the Jarzynski work relation plays an important role in our theory.Comment: 4 page
    corecore