2,011,787 research outputs found
Steady state statistics of driven diffusions
We consider overdamped diffusion processes driven out of thermal equilibrium
and we analyze their dynamical steady fluctuations. We discuss the
thermodynamic interpretation of the joint fluctuations of occupation times and
currents; they incorporate respectively the time-symmetric and the
time-antisymmetric sector of the fluctuations. We highlight the canonical
structure of the joint fluctuations. The novel concept of traffic complements
the entropy production for the study of the occupation statistics. We explain
how the occupation and current fluctuations get mutually coupled out of
equilibrium. Their decoupling close-to-equilibrium explains the validity of
entropy production principles.Comment: rewritten versio
Intensity fluctuations in steady state superradiance
Alkaline-earth like atoms with ultra-narrow optical transitions enable
superradiance in steady state. The emitted light promises to have an
unprecedented stability with a linewidth as narrow as a few millihertz. In
order to evaluate the potential usefulness of this light source as an
ultrastable oscillator in clock and precision metrology applications it is
crucial to understand the noise properties of this device. In this paper we
present a detailed analysis of the intensity fluctuations by means of
Monte-Carlo simulations and semi-classical approximations. We find that the
light exhibits bunching below threshold, is to a good approximation coherent in
the superradiant regime, and is chaotic above the second threshold.Comment: 8 pages, 5 figure
Test of Information Theory on the Boltzmann Equation
We examine information theory using the steady-state Boltzmann equation. In a
nonequilibrium steady-state system under steady heat conduction, the
thermodynamic quantities from information theory are calculated and compared
with those from the steady-state Boltzmann equation. We have found that
information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page
Steady State Entanglement in Cavity QED
We investigate steady state entanglement in an open quantum system,
specifically a single atom in a driven optical cavity with cavity loss and
spontaneous emission. The system reaches a steady pure state when driven very
weakly. Under these conditions, there is an optimal value for atom-field
coupling to maximize entanglement, as larger coupling favors a loss port due to
the cavity enhanced spontaneous emission. We address ways to implement
measurements of entanglement witnesses and find that normalized
cross-correlation functions are indicators of the entanglement in the system.
The magnitude of the equal time intensity-field cross correlation between the
transmitted field of the cavity and the fluorescence intensity is proportional
to the concurrence for weak driving fields.Comment: enhanced discussion, corrected formulas, title change, 1 added figur
Steady state theory of current transfer
Current transfer is defined as a charge transfer process where the
transferred charge carries information about its original motion. We have
recently suggested that such transfer causes the asymmetry observed in electron
transfer induced by circularly polarized light through helical wires. This
paper presents the steady state theory of current transfer within a tight
binding model of coupled wires systems. The efficiency of current transfer is
quantified in terms of the calculated asymmetry in the system response to a
steady current imposed on one of the wires, with respect to the imposed current
direction.Comment: 25 pages, 14 figure
Steady state sedimentation of ultrasoft colloids
The structural and dynamical properties of ultra-soft colloids - star
polymers - exposed to a uniform external force field are analyzed applying the
multiparticle collision dynamics approach, a hybrid coarse-grain mesoscale
simulation approach, which captures thermal fluctuations and long-range
hydrodynamic interactions. In the weak field limit, the structure of the star
polymer is nearly unchanged, however in an intermediate regime, the radius of
gyration decreases, in particular transverse to the sedimentation direction. In
the limit of a strong field, the radius of gyration increases with field
strength. Correspondingly, the sedimentation coefficient increases with
increasing field strength, passes through a maximum and decreases again at high
field strengths. The maximum value depends on the functionality of the star
polymer. High field strengths lead to symmetry breaking with trailing, strongly
stretched polymer arms and a compact star polymer body. In the weak field
linear response regime, the sedimentation coefficient follows the scaling
relation of a star polymer in terms of functionality and arm length
Steady State Thermodynamics of Langevin Systems
We study Langevin dynamics describing nonequilibirum steady states. Employing
the phenomenological framework of steady state thermodynamics constructed by
Oono and Paniconi [Prog. Theor. Phys. Suppl. {\bf130}, 29 (1998)], we find that
the extended form of the second law which they proposed holds for transitions
between steady states and that the Shannon entropy difference is related to the
excess heat produced in an infinitely slow operation. A generalized version of
the Jarzynski work relation plays an important role in our theory.Comment: 4 page
- …
