785 research outputs found

    A Survey on Unknown Presentation Attack Detection for Fingerprint

    Full text link
    Fingerprint recognition systems are widely deployed in various real-life applications as they have achieved high accuracy. The widely used applications include border control, automated teller machine (ATM), and attendance monitoring systems. However, these critical systems are prone to spoofing attacks (a.k.a presentation attacks (PA)). PA for fingerprint can be performed by presenting gummy fingers made from different materials such as silicone, gelatine, play-doh, ecoflex, 2D printed paper, 3D printed material, or latex. Biometrics Researchers have developed Presentation Attack Detection (PAD) methods as a countermeasure to PA. PAD is usually done by training a machine learning classifier for known attacks for a given dataset, and they achieve high accuracy in this task. However, generalizing to unknown attacks is an essential problem from applicability to real-world systems, mainly because attacks cannot be exhaustively listed in advance. In this survey paper, we present a comprehensive survey on existing PAD algorithms for fingerprint recognition systems, specifically from the standpoint of detecting unknown PAD. We categorize PAD algorithms, point out their advantages/disadvantages, and future directions for this area.Comment: Submitted to 3rd International Conference on Intelligent Technologies and Applications INTAP 202

    How far did we get in face spoofing detection?

    Full text link
    The growing use of control access systems based on face recognition shed light over the need for even more accurate systems to detect face spoofing attacks. In this paper, an extensive analysis on face spoofing detection works published in the last decade is presented. The analyzed works are categorized by their fundamental parts, i.e., descriptors and classifiers. This structured survey also brings the temporal evolution of the face spoofing detection field, as well as a comparative analysis of the works considering the most important public data sets in the field. The methodology followed in this work is particularly relevant to observe trends in the existing approaches, to discuss still opened issues, and to propose new perspectives for the future of face spoofing detection

    Fingerprint Spoof Buster

    Full text link
    The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This study addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared to 95.51% achieved by the LivDet 2015 competition winners. Additionally, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.Comment: 13 page

    Security Evaluation of Pattern Classifiers under Attack

    Full text link
    Pattern classification systems are commonly used in adversarial applications, like biometric authentication, network intrusion detection, and spam filtering, in which data can be purposely manipulated by humans to undermine their operation. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities, whose exploitation may severely affect their performance, and consequently limit their practical utility. Extending pattern classification theory and design methods to adversarial settings is thus a novel and very relevant research direction, which has not yet been pursued in a systematic way. In this paper, we address one of the main open issues: evaluating at design phase the security of pattern classifiers, namely, the performance degradation under potential attacks they may incur during operation. We propose a framework for empirical evaluation of classifier security that formalizes and generalizes the main ideas proposed in the literature, and give examples of its use in three real applications. Reported results show that security evaluation can provide a more complete understanding of the classifier's behavior in adversarial environments, and lead to better design choices

    Deep convolutional neural networks for face and iris presentation attack detection: Survey and case study

    Full text link
    Biometric presentation attack detection is gaining increasing attention. Users of mobile devices find it more convenient to unlock their smart applications with finger, face or iris recognition instead of passwords. In this paper, we survey the approaches presented in the recent literature to detect face and iris presentation attacks. Specifically, we investigate the effectiveness of fine tuning very deep convolutional neural networks to the task of face and iris antispoofing. We compare two different fine tuning approaches on six publicly available benchmark datasets. Results show the effectiveness of these deep models in learning discriminative features that can tell apart real from fake biometric images with very low error rate. Cross-dataset evaluation on face PAD showed better generalization than state of the art. We also performed cross-dataset testing on iris PAD datasets in terms of equal error rate which was not reported in literature before. Additionally, we propose the use of a single deep network trained to detect both face and iris attacks. We have not noticed accuracy degradation compared to networks trained for only one biometric separately. Finally, we analyzed the learned features by the network, in correlation with the image frequency components, to justify its prediction decision.Comment: A preprint of a paper accepted by IET Biometrics journal and is subject to Institution of Engineering and Technology Copyrigh

    RaspiReader: Open Source Fingerprint Reader

    Full text link
    We open source an easy to assemble, spoof resistant, high resolution, optical fingerprint reader, called RaspiReader, using ubiquitous components. By using our open source STL files and software, RaspiReader can be built in under one hour for only US $175. As such, RaspiReader provides the fingerprint research community a seamless and simple method for quickly prototyping new ideas involving fingerprint reader hardware. In particular, we posit that this open source fingerprint reader will facilitate the exploration of novel fingerprint spoof detection techniques involving both hardware and software. We demonstrate one such spoof detection technique by specially customizing RaspiReader with two cameras for fingerprint image acquisition. One camera provides high contrast, frustrated total internal reflection (FTIR) fingerprint images, and the other outputs direct images of the finger in contact with the platen. Using both of these image streams, we extract complementary information which, when fused together and used for spoof detection, results in marked performance improvement over previous methods relying only on grayscale FTIR images provided by COTS optical readers. Finally, fingerprint matching experiments between images acquired from the FTIR output of RaspiReader and images acquired from a COTS reader verify the interoperability of the RaspiReader with existing COTS optical readers.Comment: substantial text overlap with arXiv:1708.0788

    On the Learning of Deep Local Features for Robust Face Spoofing Detection

    Full text link
    Biometrics emerged as a robust solution for security systems. However, given the dissemination of biometric applications, criminals are developing techniques to circumvent them by simulating physical or behavioral traits of legal users (spoofing attacks). Despite face being a promising characteristic due to its universality, acceptability and presence of cameras almost everywhere, face recognition systems are extremely vulnerable to such frauds since they can be easily fooled with common printed facial photographs. State-of-the-art approaches, based on Convolutional Neural Networks (CNNs), present good results in face spoofing detection. However, these methods do not consider the importance of learning deep local features from each facial region, even though it is known from face recognition that each facial region presents different visual aspects, which can also be exploited for face spoofing detection. In this work we propose a novel CNN architecture trained in two steps for such task. Initially, each part of the neural network learns features from a given facial region. Afterwards, the whole model is fine-tuned on the whole facial images. Results show that such pre-training step allows the CNN to learn different local spoofing cues, improving the performance and the convergence speed of the final model, outperforming the state-of-the-art approaches

    RaspiReader: An Open Source Fingerprint Reader Facilitating Spoof Detection

    Full text link
    We present the design and prototype of an open source, optical fingerprint reader, called RaspiReader, using ubiquitous components. RaspiReader, a low-cost and easy to assemble reader, provides the fingerprint research community a seamless and simple method for gaining more control over the sensing component of fingerprint recognition systems. In particular, we posit that this versatile fingerprint reader will encourage researchers to explore novel spoof detection methods that integrate both hardware and software. RaspiReader's hardware is customized with two cameras for fingerprint acquisition with one camera providing high contrast, frustrated total internal reflection (FTIR) images, and the other camera outputting direct images. Using both of these image streams, we extract complementary information which, when fused together, results in highly discriminative features for fingerprint spoof (presentation attack) detection. Our experimental results demonstrate a marked improvement over previous spoof detection methods which rely only on FTIR images provided by COTS optical readers. Finally, fingerprint matching experiments between images acquired from the FTIR output of the RaspiReader and images acquired from a COTS fingerprint reader verify the interoperability of the RaspiReader with existing COTS optical readers.Comment: 14 pages, 14 figure

    FaceSpoof Buster: a Presentation Attack Detector Based on Intrinsic Image Properties and Deep Learning

    Full text link
    Nowadays, the adoption of face recognition for biometric authentication systems is usual, mainly because this is one of the most accessible biometric modalities. Techniques that rely on trespassing these kind of systems by using a forged biometric sample, such as a printed paper or a recorded video of a genuine access, are known as presentation attacks, but may be also referred in the literature as face spoofing. Presentation attack detection is a crucial step for preventing this kind of unauthorized accesses into restricted areas and/or devices. In this paper, we propose a novel approach which relies in a combination between intrinsic image properties and deep neural networks to detect presentation attack attempts. Our method explores depth, salience and illumination maps, associated with a pre-trained Convolutional Neural Network in order to produce robust and discriminant features. Each one of these properties are individually classified and, in the end of the process, they are combined by a meta learning classifier, which achieves outstanding results on the most popular datasets for PAD. Results show that proposed method is able to overpass state-of-the-art results in an inter-dataset protocol, which is defined as the most challenging in the literature.Comment: 7 pages, 1 figure, 7 table

    Discriminative Representation Combinations for Accurate Face Spoofing Detection

    Full text link
    Three discriminative representations for face presentation attack detection are introduced in this paper. Firstly we design a descriptor called spatial pyramid coding micro-texture (SPMT) feature to characterize local appearance information. Secondly we utilize the SSD, which is a deep learning framework for detection, to excavate context cues and conduct end-to-end face presentation attack detection. Finally we design a descriptor called template face matched binocular depth (TFBD) feature to characterize stereo structures of real and fake faces. For accurate presentation attack detection, we also design two kinds of representation combinations. Firstly, we propose a decision-level cascade strategy to combine SPMT with SSD. Secondly, we use a simple score fusion strategy to combine face structure cues (TFBD) with local micro-texture features (SPMT). To demonstrate the effectiveness of our design, we evaluate the representation combination of SPMT and SSD on three public datasets, which outperforms all other state-of-the-art methods. In addition, we evaluate the representation combination of SPMT and TFBD on our dataset and excellent performance is also achieved.Comment: To be published in Pattern Recognitio
    • …
    corecore