8 research outputs found

    Statistical and computational rates in high rank tensor estimation

    Full text link
    Higher-order tensor datasets arise commonly in recommendation systems, neuroimaging, and social networks. Here we develop probable methods for estimating a possibly high rank signal tensor from noisy observations. We consider a generative latent variable tensor model that incorporates both high rank and low rank models, including but not limited to, simple hypergraphon models, single index models, low-rank CP models, and low-rank Tucker models. Comprehensive results are developed on both the statistical and computational limits for the signal tensor estimation. We find that high-dimensional latent variable tensors are of log-rank; the fact explains the pervasiveness of low-rank tensors in applications. Furthermore, we propose a polynomial-time spectral algorithm that achieves the computationally optimal rate. We show that the statistical-computational gap emerges only for latent variable tensors of order 3 or higher. Numerical experiments and two real data applications are presented to demonstrate the practical merits of our methods.Comment: 38 pages, 8 figure

    Computational Barriers to Estimation from Low-Degree Polynomials

    Full text link
    One fundamental goal of high-dimensional statistics is to detect or recover structure from noisy data. In many cases, the data can be faithfully modeled by a planted structure (such as a low-rank matrix) perturbed by random noise. But even for these simple models, the computational complexity of estimation is sometimes poorly understood. A growing body of work studies low-degree polynomials as a proxy for computational complexity: it has been demonstrated in various settings that low-degree polynomials of the data can match the statistical performance of the best known polynomial-time algorithms for detection. While prior work has studied the power of low-degree polynomials for the task of detecting the presence of hidden structures, it has failed to address the estimation problem in settings where detection is qualitatively easier than estimation. In this work, we extend the method of low-degree polynomials to address problems of estimation and recovery. For a large class of "signal plus noise" problems, we give a user-friendly lower bound for the best possible mean squared error achievable by any degree-D polynomial. To our knowledge, this is the first instance in which the low-degree polynomial method can establish low-degree hardness of recovery problems where the associated detection problem is easy. As applications, we give a tight characterization of the low-degree minimum mean squared error for the planted submatrix and planted dense subgraph problems, resolving (in the low-degree framework) open problems about the computational complexity of recovery in both cases.Comment: 38 page
    corecore