108,521 research outputs found

    Statistical Zero Knowledge and quantum one-way functions

    Get PDF
    One-way functions are a very important notion in the field of classical cryptography. Most examples of such functions, including factoring, discrete log or the RSA function, can be, however, inverted with the help of a quantum computer. In this paper, we study one-way functions that are hard to invert even by a quantum adversary and describe a set of problems which are good such candidates. These problems include Graph Non-Isomorphism, approximate Closest Lattice Vector and Group Non-Membership. More generally, we show that any hard instance of Circuit Quantum Sampling gives rise to a quantum one-way function. By the work of Aharonov and Ta-Shma, this implies that any language in Statistical Zero Knowledge which is hard-on-average for quantum computers, leads to a quantum one-way function. Moreover, extending the result of Impagliazzo and Luby to the quantum setting, we prove that quantum distributionally one-way functions are equivalent to quantum one-way functions. Last, we explore the connections between quantum one-way functions and the complexity class QMA and show that, similarly to the classical case, if any of the above candidate problems is QMA-complete then the existence of quantum one-way functions leads to the separation of QMA and AvgBQP.Comment: 20 pages; Computational Complexity, Cryptography and Quantum Physics; Published version, main results unchanged, presentation improve

    Quantum Computationally Predicate-Binding Commitments with Application in Quantum Zero-Knowledge Arguments for NP

    Get PDF
    A quantum bit commitment scheme is to realize bit (rather than qubit) commitment by exploiting quantum communication and quantum computation. In this work, we study the binding property of the quantum string commitment scheme obtained by composing a generic quantum perfectly(resp. statistically)-hiding computationally-binding bit commitment scheme (which can be realized based on quantum-secure one-way permutations(resp. functions)) in parallel. We show that the resulting scheme satisfies a stronger quantum computational binding property, which we will call predicate-binding, than the trivial honest-binding. Intuitively and very roughly, the predicate-binding property guarantees that given any inconsistent predicate pair over a set of strings (i.e. no strings in this set can satisfy both predicates), if a (claimed) quantum commitment can be opened so that the revealed string satisfies one predicate with certainty, then the same commitment cannot be opened so that the revealed string satisfies the other predicate (except for a negligible probability). As an application, we plug a generic quantum perfectly(resp. statistically)-hiding computationally-binding bit commitment scheme in Blum\u27s zero-knowledge protocol for the NP-complete language Hamiltonian Cycle. The quantum computational soundness of the resulting protocol will follow immediately from the quantum computational predicate-binding property of commitments. Combined with the perfect(resp. statistical) zero-knowledge property which can be similarly established as in previous work, this gives rise to the first quantum perfect(resp. statistical) zero-knowledge argument system (with soundness error 1/2) for all NP languages based solely on quantum-secure one-way permutations(resp. functions)

    A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant Rounds

    Get PDF
    In a recent seminal work, Bitansky and Shmueli (STOC \u2720) gave the first construction of a constant round zero-knowledge argument for NP secure against quantum attacks. However, their construction has several drawbacks compared to the classical counterparts. Specifically, their construction only achieves computational soundness, requires strong assumptions of quantum hardness of learning with errors (QLWE assumption) and the existence of quantum fully homomorphic encryption (QFHE), and relies on non-black-box simulation. In this paper, we resolve these issues at the cost of weakening the notion of zero-knowledge to what is called ϵ\epsilon-zero-knowledge. Concretely, we construct the following protocols: - We construct a constant round interactive proof for NP that satisfies statistical soundness and black-box ϵ\epsilon-zero-knowledge against quantum attacks assuming the existence of collapsing hash functions, which is a quantum counterpart of collision-resistant hash functions. Interestingly, this construction is just an adapted version of the classical protocol by Goldreich and Kahan (JoC \u2796) though the proof of ϵ\epsilon-zero-knowledge property against quantum adversaries requires novel ideas. - We construct a constant round interactive argument for NP that satisfies computational soundness and black-box ϵ\epsilon-zero-knowledge against quantum attacks only assuming the existence of post-quantum one-way functions. At the heart of our results is a new quantum rewinding technique that enables a simulator to extract a committed message of a malicious verifier while simulating verifier\u27s internal state in an appropriate sense

    Malleable Commitments from Group Actions and Zero-Knowledge Proofs for Circuits based on Isogenies

    Get PDF
    Zero-knowledge proofs for NP statements are an essential tool for building various cryptographic primitives and have been extensively studied in recent years. In a seminal result from Goldreich, Micali and Wigderson (JACM\u2791), zero-knowledge proofs for NP statements can be built from any one-way function, but this construction leads very inefficient proofs. To yield practical constructions, one often uses the additional structure provided by homomorphic commitments. In this paper, we introduce a relaxed notion of homomorphic commitments, called malleable commitments, which requires less structure to be instantiated. We provide a malleable commitment construction from the ElGamal-type isogeny-based group action (Eurocrypt’22). We show how malleable commitments with a group structure in the malleability can be used to build zero-knowledge proofs for NP statements, improving on the naive construction from one-way functions. We consider three representations: arithmetic circuits, rank-1 constraint systems and branching programs. This work gives the first attempt at constructing a post-quantum generic proof system from isogeny assumptions (the group action DDH problem). Though the resulting proof systems are linear in the circuit size, they possess interesting features such as non-interactivity, statistical zero-knowledge, and online-extractability

    On the Computational Hardness Needed for Quantum Cryptography

    Get PDF
    In the classical model of computation, it is well established that one-way functions (OWF) are minimal for computational cryptography: They are essential for almost any cryptographic application that cannot be realized with respect to computationally unbounded adversaries. In the quantum setting, however, OWFs appear not to be essential (Kretschmer 2021; Ananth et al., Morimae and Yamakawa 2022), and the question of whether such a minimal primitive exists remains open. We consider EFI pairs - efficiently samplable, statistically far but computationally indistinguishable pairs of (mixed) quantum states. Building on the work of Yan (2022), which shows equivalence between EFI pairs and statistical commitment schemes, we show that EFI pairs are necessary for a large class of quantum-cryptographic applications. Specifically, we construct EFI pairs from minimalistic versions of commitments schemes, oblivious transfer, and general secure multiparty computation, as well as from QCZK proofs from essentially any non-trivial language. We also construct quantum computational zero knowledge (QCZK) proofs for all of QIP from any EFI pair. This suggests that, for much of quantum cryptography, EFI pairs play a similar role to that played by OWFs in the classical setting: they are simple to describe, essential, and also serve as a linchpin for demonstrating equivalence between primitives

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher
    corecore