23,003 research outputs found

    A Direct Estimation Approach to Sparse Linear Discriminant Analysis

    Get PDF
    This paper considers sparse linear discriminant analysis of high-dimensional data. In contrast to the existing methods which are based on separate estimation of the precision matrix \O and the difference \de of the mean vectors, we introduce a simple and effective classifier by estimating the product \O\de directly through constrained â„“1\ell_1 minimization. The estimator can be implemented efficiently using linear programming and the resulting classifier is called the linear programming discriminant (LPD) rule. The LPD rule is shown to have desirable theoretical and numerical properties. It exploits the approximate sparsity of \O\de and as a consequence allows cases where it can still perform well even when \O and/or \de cannot be estimated consistently. Asymptotic properties of the LPD rule are investigated and consistency and rate of convergence results are given. The LPD classifier has superior finite sample performance and significant computational advantages over the existing methods that require separate estimation of \O and \de. The LPD rule is also applied to analyze real datasets from lung cancer and leukemia studies. The classifier performs favorably in comparison to existing methods.Comment: 39 pages.To appear in Journal of the American Statistical Associatio

    Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data

    Full text link
    This work studies the theoretical rules of feature selection in linear discriminant analysis (LDA), and a new feature selection method is proposed for sparse linear discriminant analysis. An l1l_1 minimization method is used to select the important features from which the LDA will be constructed. The asymptotic results of this proposed two-stage LDA (TLDA) are studied, demonstrating that TLDA is an optimal classification rule whose convergence rate is the best compared to existing methods. The experiments on simulated and real datasets are consistent with the theoretical results and show that TLDA performs favorably in comparison with current methods. Overall, TLDA uses a lower minimum number of features or genes than other approaches to achieve a better result with a reduced misclassification rate.Comment: 20 pages, 3 figures, 5 tables, accepted by Computational Statistics and Data Analysi

    Supervised Classification Using Sparse Fisher's LDA

    Full text link
    It is well known that in a supervised classification setting when the number of features is smaller than the number of observations, Fisher's linear discriminant rule is asymptotically Bayes. However, there are numerous modern applications where classification is needed in the high-dimensional setting. Naive implementation of Fisher's rule in this case fails to provide good results because the sample covariance matrix is singular. Moreover, by constructing a classifier that relies on all features the interpretation of the results is challenging. Our goal is to provide robust classification that relies only on a small subset of important features and accounts for the underlying correlation structure. We apply a lasso-type penalty to the discriminant vector to ensure sparsity of the solution and use a shrinkage type estimator for the covariance matrix. The resulting optimization problem is solved using an iterative coordinate ascent algorithm. Furthermore, we analyze the effect of nonconvexity on the sparsity level of the solution and highlight the difference between the penalized and the constrained versions of the problem. The simulation results show that the proposed method performs favorably in comparison to alternatives. The method is used to classify leukemia patients based on DNA methylation features

    Feature Augmentation via Nonparametrics and Selection (FANS) in High Dimensional Classification

    Full text link
    We propose a high dimensional classification method that involves nonparametric feature augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, we use the ratio estimates to transform the original feature measurements. Subsequently, penalized logistic regression is invoked, taking as input the newly transformed or augmented features. This procedure trains models equipped with local complexity and global simplicity, thereby avoiding the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear combination of those of marginal densities. It is related to generalized additive models, but has better interpretability and computability. Risk bounds are developed for FANS. In numerical analysis, FANS is compared with competing methods, so as to provide a guideline on its best application domain. Real data analysis demonstrates that FANS performs very competitively on benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an extremely fast algorithm through parallel computing.Comment: 30 pages, 2 figure

    High-dimensional classification using features annealed independence rules

    Full text link
    Classification using high-dimensional features arises frequently in many contemporary statistical studies such as tumor classification using microarray or other high-throughput data. The impact of dimensionality on classifications is poorly understood. In a seminal paper, Bickel and Levina [Bernoulli 10 (2004) 989--1010] show that the Fisher discriminant performs poorly due to diverging spectra and they propose to use the independence rule to overcome the problem. We first demonstrate that even for the independence classification rule, classification using all the features can be as poor as the random guessing due to noise accumulation in estimating population centroids in high-dimensional feature space. In fact, we demonstrate further that almost all linear discriminants can perform as poorly as the random guessing. Thus, it is important to select a subset of important features for high-dimensional classification, resulting in Features Annealed Independence Rules (FAIR). The conditions under which all the important features can be selected by the two-sample tt-statistic are established. The choice of the optimal number of features, or equivalently, the threshold value of the test statistics are proposed based on an upper bound of the classification error. Simulation studies and real data analysis support our theoretical results and demonstrate convincingly the advantage of our new classification procedure.Comment: Published in at http://dx.doi.org/10.1214/07-AOS504 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparsifying the Fisher Linear Discriminant by Rotation

    Full text link
    Many high dimensional classification techniques have been proposed in the literature based on sparse linear discriminant analysis (LDA). To efficiently use them, sparsity of linear classifiers is a prerequisite. However, this might not be readily available in many applications, and rotations of data are required to create the needed sparsity. In this paper, we propose a family of rotations to create the required sparsity. The basic idea is to use the principal components of the sample covariance matrix of the pooled samples and its variants to rotate the data first and to then apply an existing high dimensional classifier. This rotate-and-solve procedure can be combined with any existing classifiers, and is robust against the sparsity level of the true model. We show that these rotations do create the sparsity needed for high dimensional classifications and provide theoretical understanding why such a rotation works empirically. The effectiveness of the proposed method is demonstrated by a number of simulated and real data examples, and the improvements of our method over some popular high dimensional classification rules are clearly shown.Comment: 30 pages and 9 figures. This paper has been accepted by Journal of the Royal Statistical Society: Series B (Statistical Methodology). The first two versions of this paper were uploaded to Bin Dong's web site under the title "A Rotate-and-Solve Procedure for Classification" in 2013 May and 2014 January. This version may be slightly different from the published versio
    • …
    corecore