14,814 research outputs found

    Statistical physics, mixtures of distributions, and the EM algorithm

    Get PDF
    We show that there are strong relationships between approaches to optmization and learning based on statistical physics or mixtures of experts. In particular, the EM algorithm can be interpreted as converging either to a local maximum of the mixtures model or to a saddle point solution to the statistical physics system. An advantage of the statistical physics approach is that it naturally gives rise to a heuristic continuation method, deterministic annealing, for finding good solutions

    EMMIXcskew: an R Package for the Fitting of a Mixture of Canonical Fundamental Skew t-Distributions

    Get PDF
    This paper presents an R package EMMIXcskew for the fitting of the canonical fundamental skew t-distribution (CFUST) and finite mixtures of this distribution (FM-CFUST) via maximum likelihood (ML). The CFUST distribution provides a flexible family of models to handle non-normal data, with parameters for capturing skewness and heavy-tails in the data. It formally encompasses the normal, t, and skew-normal distributions as special and/or limiting cases. A few other versions of the skew t-distributions are also nested within the CFUST distribution. In this paper, an Expectation-Maximization (EM) algorithm is described for computing the ML estimates of the parameters of the FM-CFUST model, and different strategies for initializing the algorithm are discussed and illustrated. The methodology is implemented in the EMMIXcskew package, and examples are presented using two real datasets. The EMMIXcskew package contains functions to fit the FM-CFUST model, including procedures for generating different initial values. Additional features include random sample generation and contour visualization in 2D and 3D

    Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions

    Get PDF
    The probability density function of the acoustic field amplitude scattered by the seafloor was measured in a rocky environment off the coast of Norway using a synthetic aperture sonar system, and is reported here in terms of the probability of false alarm. Interpretation of the measurements focused on finding appropriate class of statistical models (single versus two-component mixture models), and on appropriate models within these two classes. It was found that two-component mixture models performed better than single models. The two mixture models that performed the best (and had a basis in the physics of scattering) were a mixture between two K distributions, and a mixture between a Rayleigh and generalized Pareto distribution. Bayes' theorem was used to estimate the probability density function of the mixture model parameters. It was found that the K-K mixture exhibits significant correlation between its parameters. The mixture between the Rayleigh and generalized Pareto distributions also had significant parameter correlation, but also contained multiple modes. We conclude that the mixture between two K distributions is the most applicable to this dataset.Comment: 15 pages, 7 figures, Accepted to the Journal of the Acoustical Society of Americ

    Finite mixtures of matrix-variate Poisson-log normal distributions for three-way count data

    Full text link
    Three-way data structures, characterized by three entities, the units, the variables and the occasions, are frequent in biological studies. In RNA sequencing, three-way data structures are obtained when high-throughput transcriptome sequencing data are collected for n genes across p conditions at r occasions. Matrix-variate distributions offer a natural way to model three-way data and mixtures of matrix-variate distributions can be used to cluster three-way data. Clustering of gene expression data is carried out as means to discovering gene co-expression networks. In this work, a mixture of matrix-variate Poisson-log normal distributions is proposed for clustering read counts from RNA sequencing. By considering the matrix-variate structure, full information on the conditions and occasions of the RNA sequencing dataset is simultaneously considered, and the number of covariance parameters to be estimated is reduced. A Markov chain Monte Carlo expectation-maximization algorithm is used for parameter estimation and information criteria are used for model selection. The models are applied to both real and simulated data, giving favourable clustering results

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure
    • …
    corecore